DOI QR코드

DOI QR Code

The Enhanced Thermoforming Stability of ITO Transparent Electrode Film by Using the Conducting Polymer Thin-Film

전도성 고분자 박막을 이용한 ITO 투명 전극 필름의 열성형 안정성 향상 연구

  • Seo Yeong Son (School of Polymer Science and Engineering, Chonnam National University) ;
  • Seong Yeon Park (School of Polymer Science and Engineering, Chonnam National University) ;
  • Sangsub Lee (DI PDLC Technology) ;
  • Changhun Yun (School of Polymer Science and Engineering, Chonnam National University)
  • 손서영 (전남대학교 고분자융합소재공학부) ;
  • 박성연 (전남대학교 고분자융합소재공학부) ;
  • 이상섭 (디아이) ;
  • 윤창훈 (전남대학교 고분자융합소재공학부)
  • Received : 2023.08.14
  • Accepted : 2023.10.17
  • Published : 2023.10.31

Abstract

Indium tin oxide (ITO) transparent electrode film has been widely adopted for the various applications such as display and electric vehicle. In this paper, we studied how to enhance the thermoforming stability of ITO film by applying the highly conductive Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin layer. Based on the change of sheet resistance value, the influence of the additional solvent with different boiling point was investigated for the PEDOT:PSS coating solution. In addition, by analyzing optical transmittance and Raman spectrum, we confirmed the key mechanism which determine the final electrical conductivity of the PEDOT:PSS on ITO film using an ethylene glycol solvent. The final ITO transparent electrode coated with PEDOT:PSS performed the outstanding endurance of electrical conduction even in 126% stretching condition.

ITO 투명 전극 필름은 디스플레이, 전기 자동차 등 산업 전 범위에서 널리 사용되는 전자 재료이다. 본 연구에서는 이러한 indium tin oxide (ITO) 필름의 열성형 안정성을 향상시키기 위하여 Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) 전도성 고분자 코팅 용액 조성을 결정하였다. 1000 S/cm의 고 전도성을 보이는 PEDOT:PSS 용액에 끓는점이 각기 다른 4가지 종류의 용매를 희석하였고, 코팅 전 후 면저항 변화를 분석하였다. 또한 380~800 nm 영역의 광 투과율 분석 및 Raman 스펙트럼 분석을 통하여 PEDOT:PSS 박막이 코팅된 ITO 투명 전극의 전기적 특성 결정 메커니즘을 규명하였다. 230℃ 열성형 공정 결과 ITO 필름은 113% 연신 상태에서 이미 전기 전도성을 읽었지만, ethylene glycol을 희석 용매로 사용하여 얻어진 전도성 고분자 박막이 적용된 ITO 필름은 126% 고 연신 상태에서도 초기 60 Ω/sq 면저항을 246 Ω/sq로 유지하는 우수한 전기 전도성을 보였다.

Keywords

Acknowledgement

본 논문은 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다. (2021RIS-002)

References

  1. J. Liang, L. Li, D. Chen, T. Hajagos, Z. Ren, S. Chou, W. Hu, and Q. Pei, "Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric", Nat. Commun., 6, 7647 (2015). 
  2. T.-B, Song and N. Li, "Emerging transparent conducting electrodes for organic light emitting diodes", Electronics, 3, 190 (2014). 
  3. C. Guillen, and J. Herrero, "ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes", Sol. Energy Mater Sol. Cells, 92, 938 (2008). 
  4. J. Yoo, Y. Kim, M. Han, S. Choi, K. Song, K. Chung, J. Kim, and J. Kwak, "Silver nanowire-conducting polymer-ITO hybrids for flexible and transparent conductive electrodes with excellent durability", ACS Appl. Mater. Interfaces, 7, 15926 (2015). 
  5. J. Liu, Y. Yi, Y. Zhou, and H. Cai, "Highly stretchable and flexible graphene/ITO hybrid transparent electrode", Nanoscale Res. Lett., 11, 108 (2016). 
  6. C. Yun, J. Han, S. Kim, D. Lim, H. Jung, S. Lee, J. Jang, S. Yoo, K. Leo, and Y. Kim, "Generating semi-metallic conductivity in polymers by laserdriven nanostructural reorganization", Mater. Horiz., 6, 2145 (2019). 
  7. J. Cameron and P. Skabara, "The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives", Mater. Horiz., 7, 1759 (2020). 
  8. M. Girtan and M. Rusu, "Role of ITO and PEDOT:PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells", Sol. Energy Mater. Sol., 94, 446 (2010). 
  9. I. Lee, S. Park, Y. Lee, Y. Kim, M. Kang, and C. Yun, "Gradual morphological change in PEDOT: PSS thin films immersed in an aqueous solution", Langmuir, 39, 1600 (2023). 
  10. Y. Lee, H. Kang, S. Gwon, G. Choi, S. Lim, and J. Sun, "A strain-insensitive stretchable electronic conductor: PEDOT:PSS/acrylamide organogels", Adv. Mater., 28, 1636 (2016). 
  11. D. Martin, J. Wu, C. Shaw, Z. King, S. Spanninga, S. Richardson-Burns, J. Hendricks, and J. Yang, "The morphology of poly(3,4-ethylenedioxythiophene)", Polym. Rev., 50, 340 (2010). 
  12. H. Shi, C. Liu, Q. Jiang, and J. Xu, "Effective approaches to improve the electrical conductivity of PEDOT:PSS: A review", Adv. Electron. Mater., 1, 1500017 (2015). 
  13. I. Zozoulenko, A. Singh, S. Singh, V. Gueskine, X. Crispin, and M. Berggren, "Polarons, bipolarons, and absorption spectroscopy of PEDOT", ACS Appl. Polym. Mater., 1, 83 (2019). 
  14. S. Garreau, J. Duvail, and G. Louarn, "Spectroelectrochemical studies of poly(3,4-ethylenedioxythiophene) in aqueous medium", Synth. Metal., 125, 325 (2002). 
  15. E. Toto, S. Botti, S. Laurenzi, and M. Santonicola, "UV-induced modification of PEDOT:PSS-based nanocomposite films investigated by Raman microscopy mapping", Appl. Surf. Sci., 513, 145839 (2020). 
  16. J. Lee, S. Kim, D. Jeong, D. Shin, S. Yoo, H. Seo, and J. Park, "Silver nanowire-based stretchable and transparent electrodes", J. Semicond. Display Tech., 14, 51 (2015). 
  17. J. Spechler, T. Koh, J. Herb B. Rand, and C. Arnold, "A transparent, smooth, thermally robust, conductive polyimide for flexible electronics", Adv. Func. Mater., 25, 7428 (2015).