DOI QR코드

DOI QR Code

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University) ;
  • Mayur A. Gaikwad (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University) ;
  • Jin Hyeok Kim (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University)
  • Received : 2023.07.16
  • Accepted : 2023.09.22
  • Published : 2023.10.27

Abstract

Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

Keywords

Acknowledgement

This study was financially supported by Chonnam National University (Grant number: 2021-3986).

References

  1. U. P. Suryawanshi, M. P. Suryawanshi, U. V. Ghorpade, M. He, D. M. Lee, S. W. Shin and J. H. Kim, ACS Appl. Energy Mater., 3, 4338 (2020).
  2. M. P. Suryawanshi, U. V. Ghorpade, S. W. Shin, U. P. Suryawanshi, E. Jo and J. H. Kim, ACS Catal., 9, 5025 (2019).
  3. M. P. Suryawanshi, U. V. Ghorpade, S. W. Shin, U. P. Suryawanshi, H. J. Shim, S. H. Kang and J. H. Kim, Small, 14, 1801226 (2018).
  4. M. P. Suryawanshi, S. W. Shin, U. V. Ghorpade, J. Kim, H. W. Jeong, S. H. Kang and J. H. Kim, J. Mater. Chem. A, 6, 20678 (2018).
  5. U. P. Suryawanshi, M. P. Suryawanshi, U. V. Ghorpade, S. W. Shin, J. Kim and J. H. Kim, Appl. Surf. Sci., 495, 143462 (2019).
  6. G. Mishra, B. Dash and S. Pandey, Appl. Clay Sci., 153, 172 (2018).
  7. Y. M. Gong, H. B. Zhao, D. X. Ye, H. Y. Duan, Y. Tang, T. He, L. A. Shah and J. J. Zhang, Appl. Catal., A, 643, 118745 (2022).
  8. T. S. Munonde and H. T. Zheng, Ultrason. Sonochem., 76, 105664 (2021).
  9. X. Zhang, F. Yan, X. Ma, C. Zhu, Y. Wang, Y. Xie, S. L. Chou, Y. Huang and Y. Chen, Adv. Energy Mater., 11, 2102141 (2021).
  10. H. Chen, Z. H. Shen, Z. H. Pan, Z. K. Kou, X. M. Liu, H. Zhang, Q. L. Gu, C. Guan and J. Wang, Adv. Sci., 6, 1802002 (2019).
  11. Z. Jiang, Z. P. Li, Z. H. Qin, H. Y. Sun, X. L. Jiao and D. R. Chen, Nanoscale, 5, 11770 (2013).
  12. X. M. Liu, L. Zhang, X. R. Gao, C. Guan, Y. T. Hu and J. Wang, ACS Appl. Mater. Interfaces, 11, 23236 (2019).
  13. K. Y. Zhu, J. Y. Chen, W. J. Wang, J. W. Liao, J. C. Dong, M. O. L. Chee, N. Wang, P. Dong, P. M. Ajayan, S. P. Gao, J. Shen and M. Ye, Adv. Funct. Mater., 30, 2003556 (2020).
  14. T. G. Vo, S. J. Chang and C. Y. Chiang, Dalton Trans., 49, 1765 (2020).
  15. X. Yang, J. Cheng, Y. Xu, H. Li, W. F. Tu and J. H. Zhou, Chem. Eng. J., 472, 145076 (2023).
  16. Z. Li, X. Zhang, Y. Kang, C. C. Yu, Y. Wen, M. Hu, D. Meng, W. Song and Y. Yang, Adv. Sci. (Weinheim, Ger.), 8, 2002631 (2021).
  17. Y. Y. Li, X. Y. Zhang and Z. P. Zheng, Small, 18, 2107594 (2022).
  18. Z. A. Hu, Y. L. Xie, Y. X. Wang, L. J. Xie, G. R. Fu, X. Q. Jin, Z. Y. Zhang, Y. Y. Yang and H. Y. Wu, J. Phys. Chem. C, 113, 12502 (2009).
  19. M. A. Gaikwad, U. V. Ghorpade, U. P. Suryawanshi, P. V. Kumar, S. Jang, J. S. Jang, L. Tran, J. S. Lee, H. Bae, S. W. Shin, M. P. Suryawanshi and J. H. Kim, ACS Appl. Mater. Interfaces, 15, 21123 (2023).
  20. C. Y. Sun, H. Wang, S. Ji, X. Y. Wang, V. Linkov, X. L. Tian, L. Yao, J. R. Zhao and R. F. Wang, Sustainable Energy Fuels, 5, 2747 (2021).
  21. T. Liu and P. Diao, Nano Res., 13, 3299 (2020).
  22. W. Huang, J. Li, X. Liao, R. Lu, C. Ling, X. Liu, J. Meng, L. Qu, M. Lin, X. Hong, X. Zhou, S. Liu, Y. Zhao, L. Zhou and L. Mai, Adv. Mater., 34, 2200270 (2022).