DOI QR코드

DOI QR Code

Assessment of potential carbon storage in North Korea based on forest restoration strategies

북한 산림복원 전략에 따른 탄소저장량 잠재성 평가

  • Wonhee Cho (Industry-Academic Cooperation Foundation, Kookmin University) ;
  • Inyoo Kim (Department of Forest Resources, Kookmin University) ;
  • Dongwook Ko (Department of Forest, Environment, and Systems, Kookmin University)
  • 조원희 (국민대학교 산학협력단) ;
  • 김인유 (국민대학교 산림자원학과) ;
  • 고동욱 (국민대학교 산림환경시스템학과)
  • Received : 2023.04.26
  • Accepted : 2023.08.24
  • Published : 2023.09.30

Abstract

This study aimed to conduct a comprehensive assessment of the potential impact of deforestation and forest restoration on carbon storage in North Korea until 2050, employing rigorous analyses of trends of land use change in the past periods and projecting future land use change scenarios. We utilized the CA-Markov model, which can reflect spatial trends in land use changes, and verified the impact of forest restoration strategies on carbon storage by creating land use change scenarios (reforestation and non-reforestation). We employed two distinct periods of land use maps (2000 to 2010 and 2010 to 2020). To verify the overall terrestrial carbon storage in North Korea, our evaluation included estimations of carbon storage for various elements such as above-ground, below-ground, soil, and debris (including litters) for settlement, forest, cultivated, grass, and bare areas. Our results demonstrated that effective forest restoration strategies in North Korea have the potential to increase carbon storage by 4.4% by the year 2050, relative to the carbon storage observed in 2020. In contrast, if deforestation continues without forest restoration efforts, we predict a concerning decrease in carbon storage by 11.5% by the year 2050, compared to the levels in 2020. Our findings underscore the significance of prioritizing and continuing forest restoration efforts to effectively increase carbon storage in North Korea. Furthermore, the implications presented in this study are expected to be used in the formulation and implementation of long-term forest restoration strategies in North Korea, while fostering international cooperation towards this common environmental goal.

본 연구는 북한의 과거 토지이용 변화의 경향성을 반영한 토지이용 변화 시나리오에 따라 2050년까지의 탄소저장량 변화를 평가하였다. 토지이용 변화 시나리오는 과거 시점의 상태로부터 현 상태를 예측할 수 있는 CA-Markov 모델링을 통해 구축하였으며, 이를 위해 북한 산림복원을 위한 대내·외 노력이 시도된 2010년 전후의 토지이용 공간정보를 통해 추정한 토지이용 유형별 변화 경향성을 활용하였다. 이를 통해 산림황폐화(non-reforestation)와 산림복원(reforestation) 시나리오를 마련하였으며, 토지이용 변화에 따른 북한 탄소저장량 변화를 평가하였다. 북한의 토지이용 유형별 탄소저장량은 우리나라를 대상으로 수행된 연구문헌 조사를 통해 도심지, 산림, 농경지, 초지, 나지의 지상부, 지하부, 토양, 기타 유기물에 대한 추정값을 적용하였다. 북한을 대상으로한 대내·외 산림복원 노력은 2050년의 탄소저장량을 2020년 대비 4.4% 증진시킬 수 있는 잠재력을 지닐 것으로 판단된다. 그러나 산림복원의 노력없이 황폐화가 지속된다면 2050년 탄소저장량은 2020년 대비 11.5% 감소할 것으로 예측되었다. 이에 따라 북한의 탄소저장량 증진을 위해서 대내·외의 지속적인 노력이 매우 중요할 것으로 판단된다. 따라서, 장기적으로 북한의 산림복원을 위한 노력과 협력을 추진됨에 있어 본 연구에서 제시하는 결과가 기여할 수 있길 기대한다.

Keywords

Acknowledgement

이 연구는 롯데장학재단의 학술연구비 지원을 받아 수행되었습니다.

References

  1. Anand V and B Oinam. 2020. Future land use land cover prediction with special emphasis on urbanization and wetlands. Remote Sens. Lett. 11:225-234. https://doi.org/10.1080/2150704X.2019.1704304
  2. Ansari A and MH Golabi. 2019. Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands-A case study: Meighan Wetland, Iran. Int. Soil Water Conserv. Res. 7:64-70. https://doi.org/https://doi.org/10.1016/j.iswcr.2018.10.001
  3. Arsanjani JJ, M Helbich, W Kainz and AD Boloorani. 2013. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 21:265-275. https://doi.org/10.1016/j.jag.2011.12.014
  4. Bhang KJ, T Sarker and JD Lee. 2018. Prediction of urban land cover change using multilayer perceptron and Markov chain analysis. J. Korean Soc. Surv. Geod. 36:85-94. https://doi.org/10.7848/ksgpc.2018.36.2.85
  5. Bradley AV, IM Rosa, A Brandao, S Crema, C Dobler, S Moulds, SE Ahme, T Carneiro, MJ Smith and RM Ewers. 2017. An ensemble of spatially explicit land-cover model projections: prospects and challenges to retrospectively evaluate deforestation policy. Model. Earth Syst. Environ. 3:1215-1228. https://doi.org/10.1007/s40808-017-0376-y
  6. Chen J, J Chen, A Liao, X Cao, L Chen, X Chen, C He, G Han, S Peng and M Lu. 2015. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 103:7-27. https://doi.org/10.1016/j.isprsjprs.2014.09.002
  7. Cho W. 2022. Spatio-temporal simulation of ecosystem services in the Han River Basin, South Korea: Effects of climate change, forest Management, and land cover change. Ph.D. dissertation. Kookmin University. Seoul, Korea.
  8. Choi HA, SW Bae, SG Lee, B Seliger and WK Lee. 2017. Selecting tree species for use in North Korea's forest restoration. Korean J. Unification Aff. 29:37-56. https://doi.org/10.46561/KUA.2017.29.1.02
  9. Chung MG, H Kang and SU Choi. 2015. Assessment of coastal ecosystem services for conservation strategies in South Korea. PLoS One 10:e0133856. https://doi.org/10.1371/journal.pone.0133856
  10. FAO. 2020. Global Forest Resources Assessment 2020. United Nations, 2020.
  11. Gagniuc PA. 2017. Markov Chains: From Theory to Implementation and Experimentation. Wiley. New York, US.
  12. Hasan S, W Shi, X Zhu, S Abbas and HUA Khan. 2020. Future simulation of land use changes in rapidly urbanizing South China based on land change modeler and remote sensing data. Sustainability 12:4350. https://doi.org/10.3390/su12114350
  13. Ho TK. 1995. Random decision forests. pp. 278-282. In: Proceedings of 3rd International Conference on Document Analysis and Recognition. Institute of Electrical and Electronics Engineers Computer Society. Montreal, Canada. https://doi.org/10.1109/ICDAR.1995.598994
  14. Hong SY, YS Zhang, YH Kim, MS Kim, E Choe and SK Ha. 2010. A study on estimating soil carbon storage in Asian countries and Korea. pp. 148-149. In: Proceedings of 2010 Korean Society of Soil Science and Fertilizer Fall Meeting. Korean Society of Soil Science and Fertilizer. Daegu, Korea.
  15. Ji D. 2016. Exclusive: N. Korean Warning Threatens Deforesters with Execution. NK News. https://www.nknews.org/2016/11/exclusive-n-korean-warning-threatens-deforesters-with-execution. Accessed August 23, 2023.
  16. Jun C, Y Ban and S Li. 2014. Open access to Earth land-cover map. Nature 514:434-434. https://doi.org/10.1038/514434c
  17. KFS. 2016. 2016 Annual Report on Forest and Forestry Trends. Korea Forest Service. Daejeon, Korea.
  18. Kim D, CH Lim, C Song, WK Lee, D Piao, S Heo and S Jeon. 2016b. Estimation of future carbon budget with climate change and reforestation scenario in North Korea. Adv. Space Res. 58:1002-1016. https://doi.org/10.1016/j.asr.2016.05.049
  19. Kim J, SH Han, H Chang, T Kim, I Jang, W Oh, C Seo, W Lee and Y Son. 2016a. Quantitative assessment of climate regulating ecosystem services using carbon storage in major Korean ecosystems. Korean J. Environ. Biol. 34:8-17. https://doi.org/10.11626/KJEB.2016.34.1.008
  20. Kim SY, SY Park and KS Park. 2016. A study on new change of forest management in DPRK by introducing agroforestry of sloping land management. Korean J. Unification Aff. 28:127-157.
  21. KINU. 2014. 'Green Detente' Action Strategy: Formation of Environmental Community and Peaceful Ecological Use of DMZ in Border Region. Korea Institute for National Unification. Seoul, Korea.
  22. Lee SH. 2004. Situation of degraded forest land in DPRK and strategies for forestry cooperation between South and North Korea. J. Agric. Life Sci. 38:101-113.
  23. Li X, Y Zhou and W Chen. 2020. An improved urban cellular automata model by using the trend-adjusted neighborhood. Ecol. Process. 9:1-13. https://doi.org/10.1186/s13717-020-00234-9
  24. Lim CH and HC Yeo. 2022. Understanding the long-term vegetation dynamics of North Korea and their impact on the thermal environment. Forests 13:1053. https://doi.org/10.3390/f13071053
  25. Mwabumba M, BK Yadav, MJ Rwiza, I Larbi and S Twisa. 2022. Analysis of land use and land-cover pattern to monitor dynamics of Ngorongoro world heritage site (Tanzania) using hybrid cellular automata-Markov model. Curr. Res. Environmental Sustainability 4:100126. https://doi.org/10.1016/j.crsust.2022.100126
  26. NIFOS. 2014. Governance Establishment and Operation Plan for Forest Restoration Support in North Korea. National Institute of Forest Science. Seoul, Korea.
  27. NIFOS. 2015. Compilation of National Forest Greenhouse Gas Statistics Using Carbon Emission Factors. National Institute of Forest Science. Seoul, Korea.
  28. NIFOS. 2022. Analysis of North Korean Forest Trends in the First Half of 2021. National Institute of Forest Science. Seoul, Korea.
  29. Park K, S Lee and S Park. 2009. A study on the North Korea's change of forest policy since the economic crisis in 1990s. Korean J. Unification Aff. 21:459-492.
  30. Park KS and SY Park. 2012. The rehabilitation of North Korea's devastated forest with the focus on the case of South Korea. North Korean Studies 8:133-159. https://doi.org/10.23040/kcidoi.2012.8.1.005
  31. Park KS. 2013. Forest Condition and Policy in North Korea. Korea Rural Economic Institute Quarterly Agricultural Trends in North Korea 15:3-23.
  32. Piao D, WK Lee, Y Zhu, M Kim and C Song. 2016. Assessment of forest degradation and carbon storage for REDD+ project in North Korea. Korean J. Environ. Biol. 34:1-7. https://doi.org/10.11626/KJEB.2016.34.1.001
  33. Raj A and LK Sharma. 2022. Assessment of land-use dynamics of the Aravalli range (India) using integrated geospatial and CART approach. Earth Sci. Inform. 15:492-522. https://doi.org/10.1007/s12145-021-00753-9
  34. The Government of the Republic of Korea. 2020. 2050 Carbon Neutral Strategy of the Republic of Korea: Towards a Sustainable and Green Society. The Government of the Republic of Korea. https://unfccc.int/sites/default/files/resource/LTS1_RKorea.pdf Accessed August 24, 2023
  35. Tomasso LP and M Leighton. 2014. The impact of land use change for greenhouse gas inventories and state-level climate mediation policy: a GIS methodology applied to Connecticut. J. Environ. Prot. 5:1572. https://doi.org/10.4236/jep.2014.517149
  36. Wolfram S. 1983. Statistical mechanics of cellular automata. Rev. Mod. Phys. 55:601. https://doi.org/10.1103/RevModPhys.55.601