DOI QR코드

DOI QR Code

Statistical Optimization of Culture Conditions for Lactobacillus Strains using Response Surface Methodology

반응표면분석법을 이용한 Lactobacillus 균주 배양조건의 통계적 최적화

  • Young Min Hwang (Department of Food Safety and Regulatory Science, Chung-Ang University) ;
  • Hee-Seok Lee (Department of Food Safety and Regulatory Science, Chung-Ang University)
  • 황영민 (중앙대학교 식품안전규제과학과) ;
  • 이희석 (중앙대학교 식품안전규제과학과)
  • Received : 2023.07.14
  • Accepted : 2023.10.17
  • Published : 2023.10.30

Abstract

The demand for probiotic products has been steadily increasing, and Lactobacillus strains are widely used and are currently the most popular probiotics. Optimizing culture conditions for Lactobacillus production for use as probiotics will enhance their profitability by reducing production costs and time. Statistical analysis using response surface methodology revealed the following optimal sets of independent variables: 22.55 h (cultivation time), 25℃ (cultivation temperature), and 3.41% (w/w, prebiotics concentration) for Lactobacillus acidophilus; 24 h, 30.86℃, and 2% (w/w) for Lactiplantibacillus plantarum; 66.67 h, 35℃, and 3.41% (w/w) for Lacticaseibacillus rhamnosus. Actual outcomes using predicted optimal conditions for Lactobacillus strains have been confirmed to closely match predicted results. This study will provide valuable guidelines for high yield Lactobacillus production.

프로바이오틱스 제품에 대한 수요가 지속적으로 증가하고 있으며, Lactobacillus 균주가 가장 대중적인 프로바이오틱스로 널리 사용되고 있다. 프로바이오틱스는 기준에 적합한 균수의 확보가 중요하며 제조원가나 시간 등을 낮추기 위해 배양법의 개발이 필요하므로 Lactobacillus 생산을 위한 배양 조건이 최적화되었다. 반응표면방법론에 의한 통계적 최적화에서 반응 변수에 영향을 미치는 독립 변수의 최적 조건은 Lactobacillus acidophilus의 경우 22.55 시간(배양시간), 25℃(배양온도), 3.41%(프리바이오틱스 농도); Lactiplantibacillus plantarum의 경우 24시간, 30.86℃, 2.00%; Lacticaseibacillus rhamnosus의 경우 66.67시간, 35℃, 3.41%이었다. Lactobacillus의 최적 배양조건은 예측한 결과와 실제 결과가 밀접하게 일치하는 것을 확인하였다. 이러한 데이터는 수율 높은 Lactobacillus를 생산하는데 중요한 포인트를 제공할 것이다.

Keywords

Acknowledgement

This work was supported by a grant (21153MFDS605) from the Ministry of Food and Drug Safety.

References

  1. Zuniga, M., Monedero, V., Yebra, M.J., Utilization of hostderived glycans by intestinal Lactobacillus and Bifidobacterium species. Front. Microbiol., 9, 1917 (2018).
  2. Tannock, G.W., A special fondness for lactobacilli. Appl. Environ. Microbiol., 70, 3189-3194 (2004). https://doi.org/10.1128/AEM.70.6.3189-3194.2004
  3. Kerry, R.G., Patra, J.K., Gouda, S., Park, Y., Shin, H.S., Das, G., Benefaction of probiotics for human health: a review. J. Food Drug. Anal., 26, 927-939 (2018). https://doi.org/10.1016/j.jfda.2018.01.002
  4. Marteau, P., Flourie, B., Pochart, P., Chastang, C., Desjeux, J.F., Rambaud, J.C., Effect of the microbial lactase (EC 3.2. 1.23) activity in yoghurt on the intestinal absorption of lactose: an in vivo study in lactase-deficient humans. Br. J. Nutr., 64, 71-79 (1990). https://doi.org/10.1079/BJN19900010
  5. Hatcher, G.E., Lambrecht, R.S., Augmentation of macrophage phagocytic activity by cell-free extracts of selected lactic acid-producing bacteria. J. Dairy Sci., 76, 2485-2492 (1993). https://doi.org/10.3168/jds.S0022-0302(93)77583-9
  6. Sekine, K., Watanabe-Sekine, E., Toida, T., Kasashima, T., Kataoka, T., Hashimoto, Y., Adjuvant activity of the cell wall of Bifidobacterium infantis for in vivo immune responses in mice. Immunopharmacol. Immunotoxicol., 16, 589-609 (1994). https://doi.org/10.3109/08923979409019741
  7. Park, S.Y., Ji, G.E., Ko, Y.T., Jung, H.K., Ustunol, Z., Pestka, J.J., Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264.7 macrophage cells exposed to human and commercial isolates of Bifidobacterium. Int. J. Food Microbiol., 46, 231-241 (1999). https://doi.org/10.1016/S0168-1605(98)00197-4
  8. Aoki, T., Asahara, T., Matsumoto, K., Takada, T., Chonan, O., Nakamori, K., Nonaka, C., Yamaji, I., Hisamoto, T., Sato, M., Effects of the continuous intake of a milk drink containing Lactobacillus casei strain Shirota on abdominal symptoms, fecal microbiota, and metabolites in gastrectomized subjects. Scand. J. Gastroenterol., 49, 552-563 (2014). https://doi.org/10.3109/00365521.2013.848469
  9. Yang, B., Yue, Y., Chen, Y., Ding, M., Li, B., Wang, L., Wang, Q., Stanton, C., Ross, R. P., Zhao, J., Zhang, H., Chen, W., Lactobacillus plantarum CCFM1143 alleviates chronic diarrhea via inflammation regulation and gut microbiota modulation: A double-blind, randomized, placebo-controlled study. Front. Immunol., 12, 746585 (2021).
  10. Nowak, A., Paliwoda, A., Blasiak, J., Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: a review of mechanisms and therapeutic perspectives. Crit. Rev. Food Sci. Nutr., 59, 3456-3467 (2019). https://doi.org/10.1080/10408398.2018.1494539
  11. Moon, G.S., Trends in studies on probiotics, prebiotics, and synbiotics. Food Sci. Ind., 52, 208-219 (2019).
  12. Li, Y., Yang, S., Lun, J., Gao, J., Gao, X., Gong, Z., Wan, Y., He, X., Cao, H., Inhibitory effects of the Lactobacillus rhamnosus GG effector protein HM0539 on inflammatory response through the TLR4/MyD88/NF-κB axis. Front. Immunol., 11, 551449 (2020).
  13. MARKETSANDMARKETS., (2021, August 22). Probiotics Food & Cosmetics Market worth $84.5 billion by 2026. Retrieved from https://www.marketsandmarkets.com/Market-Reports/probiotics-food-cosmetic-market22485898.html
  14. Kook, S.Y., Kim, Y., Kang, B., Choe, Y.H., Kim, Y.H., Kim, S., Characterization of the fecal microbiota differs between age groups in Koreans. Intest. Res., 16, 246-254 (2018). https://doi.org/10.5217/ir.2018.16.2.246
  15. He, G.Q., Kong, Q., Ding, L.X., Ding, L., Response surface methodology for optimizing the fermentation medium of Clostridium butyricum. Lett. Appl. Microbiol., 39, 363-368 (2004). https://doi.org/10.1111/j.1472-765X.2004.01595.x
  16. Lotfy, W.A., Ghanem, K.M., El-Helow, E.R., Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs. Bioresour. Technol., 98, 3470-3477 (2007). https://doi.org/10.1016/j.biortech.2006.11.032
  17. Park, M.S., Ji, G.E., Development of probiotics and industrialization. Food Sci. Ind., 47, 19-28 (2014).
  18. Hernandez-Hernandez, O., Muthaiyan, A., Moreno, F.J., Montilla, A., Sanz, M.L., Ricke, S.C., Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus. Food Microbiol., 30, 355-361 (2012). https://doi.org/10.1016/j.fm.2011.12.022
  19. Kimoto-Nira, H., Suzuki, C., Sasaki, K., Kobayashi, M., Mizumachi, K., Survival of a Lactococcus lactis strain varies with its carbohydrate preference under in vitro conditions simulated gastrointestinal tract. Int. J. Food Microbiol., 143, 226-229 (2010). https://doi.org/10.1016/j.ijfoodmicro.2010.07.033
  20. Mataragas, M., Metaxopoulos, J., Galiotou, M., Drosinos, E.H., Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci., 64, 265-271 (2003). https://doi.org/10.1016/S0309-1740(02)00188-2
  21. Messens, W., Verluyten, J., Leroy, F., De Vuyst, L., Modelling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation processes. Int. J. Food Microbiol., 81, 41-52 (2003). https://doi.org/10.1016/S0168-1605(02)00168-X
  22. Medvedova, A., Mancuskova, T., Valik, L., Growth of Lactobacillus acidophilus NCFM in dependence on temperature. Acta Aliment., 45, 104-111 (2016). https://doi.org/10.1556/066.2016.45.1.13
  23. Choi, J.I., Lee, H.S., Choi, S.K., Kim, J.H., Kim, J.K., Misawa, N., Byun, M.W., Lee, J.W., Optimization of medium for astaxanthin production by Paracoccus sp. using response surface methodology. KSBB J., 24, 321-326 (2009).
  24. Mishra, S., Mishra, H.N., Effect of synbiotic interaction of fructooligosaccharide and probiotics on the acidification profile, textural and rheological characteristics of fermented soy milk. Food Bioproc. Tech., 6, 3166-3176 (2013). https://doi.org/10.1007/s11947-012-1021-4
  25. Yoo, H., Rheem, I., Rheem, S., Oh, S., Optimizing medium components for the maximum growth of Lactobacillus plantarum JNU 2116 using response surface methodology. Korean J Food Sci. Anim. Resour., 38, 240 (2018).