DOI QR코드

DOI QR Code

A Factor Analysis of Teacher's Scaffolding Expected by Elementary School Students in Science Classes

과학 수업에서 초등학생들이 바라는 교사 스캐폴딩의 요인 분석

  • Received : 2023.09.22
  • Accepted : 2023.10.14
  • Published : 2023.10.31

Abstract

The purpose of this study is to extract teacher's scaffolding factors in elementary science classes that students expected and define the structural relationships between each factor. The survey items, completed after the preliminary research stage, were used to survey 436 elementary school students across Korea. An exploratory factor analysis of the responses was conducted, and four factors with a cumulative variance of 61.65% were extracted. We named these factors, based on the nature of the items and previous research, as follows: conceptual, procedural, metacognitive, and emotional scaffolding. A confirmatory factor analysis was then conducted, and the correlations between the factors were relatively high, ranging from .65 to .75, indicating that the different scaffolding factors were closely related. Procedural and conceptual scaffoldings showed high correlations with emotional scaffolding. This shows that emotional support helps students participate well in class and ultimately has a positive effect on cognitive scaffolding. To verify the compatibility of this model, absolute and incremental fit indices were applied, and all indices were found to satisfy the judgment criteria. The averages of each factor were compared and verified to determine the students' perceptions of the extracted scaffolding factors. The need for emotional scaffolding was the highest, and the need for metacognitive scaffolding was the lowest. Through this study, we were able to structure the type of scaffolding that elementary school students desire from their teachers in science classes, and we expect that this will help teachers design scaffolding more systematically and more appropriately meet their students' needs.

이 연구의 목적은 초등학교 과학 수업에서 학생들이 바라는 교사의 스캐폴딩 요인을 추출하고 요인들 간 구조적 연관성을 밝히는 것이다. 이를 위해 관련 선행연구를 바탕으로 스캐폴딩의 공통적인 요소를 추출한 뒤 초등 과학 수업의 특성을 고려하여 설문 문항을 개발하였다. 예비 조사 단계를 거쳐 완성된 최종 설문지를 활용하여 전국의 초등학생 436명을 대상으로 과학 수업에서 바라는 교사 스캐폴딩의 요인에 관한 설문 조사를 실시하였다. 응답 내용에 대해 탐색적 요인 분석(EFA)을 실시한 결과 누적 분산이 61.65%인 4개의 요인이 추출되었다. 이를 문항의 특성과 선행연구를 토대로 각각 개념적, 절차적, 메타인지적, 정서적 스캐폴딩으로 명명하였다. 이들 요인 간 구조적 관계를 살펴보기 위하여 확인적 요인 분석(CFA)을 실시하였다. 각 요인 간 상관관계는 .65~.75의 비교적 높은 상관을 보였으며 이는 과학 수업에서 여러 가지 스캐폴딩 요소들이 서로 밀접하게 영향을 미치고 있음을 의미한다. 특히 절차적 스캐폴딩 및 개념적 스캐폴딩과 정서적 스캐폴딩 간 상관이 가장 높게 나타났다. 정서적인 지원은 학생이 수업에 참여할 수 있도록 도움을 주고 결국 개념적, 절차적 스캐폴딩과 같은 인지적 스캐폴딩과 상보적인 영향을 미친다는 것을 알 수 있다. 본 모델의 적합도 검증을 위해 절대 적합 지수와 증분적합 지수를 활용한 결과 모든 지수들이 판단 기준을 만족하는 것으로 나타났다. 또한 추출된 스캐폴딩 요인별 학생들의 요구도를 알아보기 위하여 각 요인의 평균값 및 개방형 질문에 대한 응답 내용을 비교하였다. 그 결과 정서적 스캐폴딩에 대한 요구도가 가장 높았으며 메타인지적 스캐폴딩의 요구도는 가장 낮았다. 본 연구는 학생의 응답을 통해 스캐폴딩의 양상을 밝혔다는 점에서 의의가 있으며 이를 통해 밝혀진 학생이 바라는 스캐폴딩 요인 구조 및 학생의 요구도 특성은 교사의 과학 수업 계획 및 스캐폴딩 이해의 기초자료로 활용될 수 있으리라 기대한다.

Keywords

References

  1. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327
  2. Bruner, J. S. (1986). Actual minds and possible worlds. Cambridge: Harvard University Press.
  3. Cho, S., & Song, H. (2013). A study on the effects of reflexive level and scaffolding types on cognitive presence and achievement test in a blended learning environment. Korean Journal of Educational Research, 51(3), 219-242.
  4. Davis, E., & Linn, M. (2000). Scaffolding students' knowledge integration: Prompts for reflection in KIE. International Journal of Science Education, 22, 819-837.
  5. Do, H., Park, J., & Yoo, J. (2016). An analysis of teacher's scaffolding for promoting social construction of scientific models in middle school science classes. Journal of the Korean Association for Science Education, 36(4), 643-655. https://doi.org/10.14697/jkase.2016.36.4.0643
  6. Ge, X., & Land, S. M. (2004). A conceptual frameworks for scaffolding ill-structured problem-solving processes using question prompts and peer interactions. Educational Technology Research and Development, 52(2), 5-22.
  7. Hannafin, M., Land, S., & Oliver, K. (1999). Open learning environments: Foundations, methods, and models. In C. Reigeluth (Ed.), Instructional design theories and models: A new paradigm of instructional theory (Vol. II, pp. 115-140). Mahway, NJ: Erlbaum.
  8. Haruehansawasin, S., & Kiattikomol, P. (2018). Scaffolding in problem-based learning for low-achieving learners. Journal of Educational Research, 111(3), 363-370.
  9. Hassard, J., & Dias, M. (2009). The art of teaching science: Inquiry and innovation in middle school and high school. NY: Routledge.
  10. Hsin, C-T., & Wu, H-K. (2011). Using scaffolding strategies to promote young children's scientific understandings of floating and sinking. Journal of Science Education & Technology, 20, 656-666. https://doi.org/10.1007/s10956-011-9310-7
  11. Hwang, S. (2021). A systematic review of scaffolding related research trends in Korea. Journal of Learner-Centered Curriculum and Instruction, 21(7), 217-237. https://doi.org/10.22251/jlcci.2021.21.7.217
  12. Ju, E., Lee, J., & Jang, S. (2013). Effects of pre-service teacher's scaffolding in environmental camp about climate change. Journal of Korean Elementary Science Education, 32(1), 82-94.
  13. Kang, I. (2016). Why constructivism: Information age and learner-centered educational environment. Seoul: Moonumsa.
  14. Kang, M., Lim, Y., Kim, M., & Kim, J. (2009). The difference between two scaffolding types in academic achievement and science inquiry skills for WISE-based science education. The Korean Journal of Educational Methodology Studies, 21(1), 1-99.
  15. Kim, G. (2001). Analysis structural equation modeling AMOS4. Seoul: SPSS Academy Publication Co.
  16. Kim, H., Yoon, H., Lee, K., Ha, M., & Cho, H. (2021). Theories of science education. Seoul: Kyoyookbook Publication Co.
  17. Kim, M., & Hannafin, M. (2004). Designing online learning environments to support scientific inquiry. Quarterly Review of Distance Education, 5(1), 1-10.
  18. Kim, M., & Hannafin, M. (2011). Scaffolding 6th graders' problem solving in technology-enhanced science classroom: A qualitative case study. Instructional Science, 39(3), 255-282. https://doi.org/10.1007/s11251-010-9127-4
  19. Kim, S., & Jeong, I. (2011). The scratch programming learning attitude effects of scaffolding based learning strategy. Journal of the Korean Association of Information Education, 15(1), 39-49.
  20. KOFAC (2022). Development research of draft of 2022 revised subject curriculum: Science curriculum. Seoul: KOFAC
  21. Lee, K., Heo, J., & Park, J. (2019). Development and application of cognitive scaffolding tools for enhancing the integrated science process skills of high school students. Journal of Korean Association for Science Education, 39(4), 545-562.
  22. Lee, K., & Lee, Y. (2015). The difference of the scaffolding type on learners' interactions and the quality of discussion in the web-based discussion. Journal of Korean Association for Educational Information and Media, 21(3), 423-439. https://doi.org/10.15833/KAFEIAM.21.3.423
  23. Lee, S. (2010). Fundamentals of factor analysis. Seoul: Kyoyookbook Publication Co.
  24. Lee, S., & Kim, H. (2017). Effects of scaffolding and metacognition and collaborative preference on problem-solving in blended collaborative learning. Journal of Korean Association for Educational Information and Media, 23(1), 83-108. https://doi.org/10.15833/KAFEIAM.23.1.083
  25. Lim, K., Park, H., & Kim, J. (2015). Exploratory study on the patterns of interaction and team performance according to the scaffolding types in a web-based collaborative problem solving. Journal of Learner-Centered Curriculum and Instruction, 15(8), 1-25.
  26. Linn, M. C., & Hsi, S. (2000). Computers, teachers and peers: Science learning partners. Mahwah: Erlbaum.
  27. Martin, N. D., Dornfeld Tissenbaum, C., Gnesdilow, D., & Puntambekar, S. (2019). Fading distributed scaffolds: The importance of complementarity between teacher and material scaffolds. Instructional Science, 47(1), 69-98
  28. McLoughlin, C. (2002). Learner support in distance and networked learning environments: Ten dimensions for successful design. Distance Education, 23(2), 149-162. https://doi.org/10.1080/0158791022000009178
  29. Mercer, N. (1995). The guided construction of knowledge: Talk amongst teachers and learners. PA: Multilingual Matters LTD.
  30. Meyer, D. K., & Turner, J. C. (2002). Using instructional discourse analysis to study the scaffolding of student self-regulation. Educational Psychologist, 37(1), 17-25.
  31. Palinscar, A. S. (1986). The role of dialogue in providing scaffolded instruction. Educational Psychologist, 21(1&2), 73-98. https://doi.org/10.1080/00461520.1986.9653025
  32. Park, C. (1999). Social constructivism and classroom dialogue: Implications of knowledge construction in childhood education. Journal of Chinju National University, 38, 277-294.
  33. Park, J., & Lee, K. (2012). Exploring the components and functions of scaffolding in open inquiry through factor analysis. Journal of the Korean Association for Science Education, 32(7), 1204-1221. https://doi.org/10.14697/jkase.2012.32.7.1204
  34. Park, M. (2016). Emotional scaffolding as a strategy to support children's engagement in instruction. Universal Journal of Educational Research, 4(10), 2353-2358.
  35. Puntambekar, S., & Kolodner, J. L. (2005). Toward implementing distributed scaffolding: Helping students learn science from design. Journal of Research in Science Teaching, 42(2), 185-217. https://doi.org/10.1002/tea.20048
  36. Roehler, L. R., & Cantlon, D. J. (1997). Scaffolding: A powerful tool in social constructivist classrooms. Cambridge, MA: Brookline Books.
  37. Rosenshine, B., & Meister, C. (1992). The use of scaffolds for teaching high-level cognitive strategies. Educational Leadership, 49(7), 26-33.
  38. Sagong, M., & Choi, M. (2009). Differences of the achievement and participation according to learner's introversion-extroversion and teacher's scaffolding types in the web-based project learning. Journal of Korean Association for Educational Information and Media, 15(1), 215-234.
  39. Saye, J. W., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. Educational Technology Research and Development, 50(3), 77-96. https://doi.org/10.1007/BF02505026
  40. Seong, T. (2014). Easy-to-understand statistical analysis using SPSS and AMOS: From descriptive statistics to structural equation models. Seoul: Hakjisa Publish Co.
  41. Shin, J. (2011). Meta-analysis of the effects of lessons using a scaffolding strategy. The Journal of Education, 24(2), 25-46.
  42. Shin, S., Brush, T., & Glazewski, K. (2020). Patterns of peer scaffolding in technology-enhanced inquiry classrooms: application of social network analysis. Educational Technology Research and Development, 68, 2321-2350. https://doi.org/10.1007/s11423-020-09779-0
  43. Stone, C. A. (1998). The metaphor of scaffolding: Its utility for the field of learning disabilities. Journal of Learning Disabilities, 31(4), 344-364. https://doi.org/10.1177/002221949803100404
  44. Tharp, R. G., & Gallimore, R. (1991). The instructional conversation: Teaching and learning in social activity. CA: The National Center for Research on Cultural Diversity and Second Language Learning
  45. Tomkins, S. P., & Tunnicliffe, S. D. (2001). Looking for ideas: Observation, interpretation and hypothesis-making by 12 year-old pupils undertaking science investigations. International Journal of Science Education, 23, 791-813. https://doi.org/10.1080/09500690119322
  46. Turner, J. C., Meyer, D. K., Cox, K. E., Logan, C., DiCintio, M., & Thomas, C. T. (1998). Creating contexts for involvement in mathematics. Journal of Educational Psychology, 90(4), 730-745. https://doi.org/10.1037/0022-0663.90.4.730
  47. Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher-student interaction: A decade of research. Educational Psychology Review, 22(3), 271-296.
  48. Vygotsky, L. S. (1978). Mind in Society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.) Cambridge, MA: Harvard University Press.
  49. Winnips, K. (2000). Scaffolding-by-design: A model for WWW-based learner support. En-schede: University of Twente Press.
  50. Winnips, K., & McLoughlin, C. (2000). Applications and categorization of software-based scaffolding. In J. Bourdear & R. Heller (Eds.), Proceedings of world conference on educational multimedia, Hypermedia and telecommunications 2000(pp. 1798-1799). Chesapeake, VA: AAGE.
  51. Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
  52. Yu, J. (2022). The concept and understanding of structural equation modeling by the professor Yujongpil. Seoul: Hannarae Publishing Co.
  53. Zembylas, M. (2004). Emotional issues in teaching science: A case study of a teacher's views. Research in Science Education, 34, 343-364. https://doi.org/10.1007/s11165-004-0287-6