DOI QR코드

DOI QR Code

Distribution Rate of Particles Exiting Jinju Bay in the Namgang Dam Freshwater Discharge

남강댐 담수 방류시 진주만을 빠져나가는 입자들의 수로별 분배율 평가

  • Namyoun No (Dept. of Civil & Environmental Engineering, Kunsan National University) ;
  • Minsun Kwon (Ocean Physics Dept., Land & Ocean Environmental Eng.) ;
  • Hyeryeon Kwon (Dept. of Civil & Environmental Engineering, Kunsan National University) ;
  • Jonggu Kim (Dept. of Environmental Engineering, Kunsan National University)
  • 노남윤 (군산대학교 토목환경공학부) ;
  • 권민선 (국토해양환경기술단) ;
  • 권혜련 (군산대학교 토목환경공학부) ;
  • 김종구 (군산대학교 환경공학과)
  • Received : 2023.07.25
  • Accepted : 2023.10.27
  • Published : 2023.10.31

Abstract

In this study, a numerical particle tracking experiment was conducted to assess the distribution characteristics of freshwater exclusion resulting from the discharge of Gahwa Stream into Sacheon, Jinju, and Gangjin bays, located downstream of the Namgang Dam. The number of particles discharged into Noryang Channel, Daebang Channel, and Changseon Strait was compared by releasing 1000 particles through Gahwa Stream under three discharge conditions: no discharge, discharge during rainfall, and discharge during flood. Evidently, the percentage of particles in the Noryang Channel increased, whereas that in the Daebang Channel decreased as the discharge from the Gahwa Stream increased. Approximately 95% of the material located downstream of the Gahwa Stream generally escaped through the Daebang Channel. However, as the discharge from the Namgang Dam increased due to rainfall, the percentage of particles in the Noryang Channel increased, reaching 45.5% during floods.

남강댐 하류역에 위치한 사천만, 진주만, 강진만에서 가화천 방류에 따른 담수 배제의 분배 특성을 평가하기 위하여 입자추적 수치실험을 실험하였다. 가화천을 통해 3개의 방류조건(무방류, 강우시 방류, 홍수시 방류)에서 입자 1000개를 투여하여 노량수도, 대방수도, 창선해협으로 빠져나가는 입자의 수를 비교하였다. 가화천을 통한 방류량이 늘어날수록 노량수도로의 입자 분배율이 증가하고, 대방수도로의 분배율이 감소하는 것을 확인할 수 있었다. 즉, 평소에는 가화천 하류에 위치한 물질의 약 95%가 대방수도를 통해 빠져나가다가, 강우에 의해 남강댐의 방류량이 증가하면서 노량수도로의 분배율이 증가하며, 홍수시에는 노량수도로의 입자 분배율이 45.5% 까지 증가하는 것을 확인할 수 있었다.

Keywords

References

  1. Hong, D. U.(2020), Characteristics of Sea Water Circulation in Narrow Waterway Type Closed Inner Bay Considering River Outflow Water, Dissertation, Pukyong National University, 2020.
  2. Jang, S. H., K. D. Oh, and J. H. Oh(2016), A study on the behavior of floating debris in a Flood Control Dam using the Lagrangian Particle Tracking Method, J. of Environ. Sci. International, 25(9), pp. 1253-1267. https://doi.org/10.5322/JESI.2016.25.9.1253
  3. Jeong, W. C., N. S. Park, and S. H. Lee(2021), Water for Futrue, Vol. 54, No. 3, pp. 46-54.
  4. Jung, K. Y.(2007), Three-Dimensional Numerical Modeling of Tidal, Wind-Driven and Density Currents in the Kangjin Bay, South Sea, Korea, Dep't of Oceanography, Graduate School Chungnam National Univ.
  5. Jung, K. Y. and Y. J. Ro(2010), Stratification and destratification processes in the Kangjun Bay, South Sea, Korea, 「The Sea」 J. of the Korean Soc. of Oceanography, 15(3), pp. 97-109.
  6. Jung, K. Y., Y. J. Ro, B. J. Kim, and K. S. Park(2012), Model trajectory simulation for the behavior of the namgang Dam water in the Kangjin Bay, South Sea, Korea, J. of Korean Soc. of Coastal and Ocean Engineers, 24(2), pp. 97-108. https://doi.org/10.9765/KSCOE.2012.24.2.097
  7. Jung, Y. C.(1997), The application of Lagrangian Particle Tracking Method to Modelling of Oil-Spill daspersion, J. of the Korean Soc. of Marine Environ. & Safety, 3(1), pp. 73-83.
  8. K-water(2023), retrieved from https://www.water.or.kr/kor/realtime/sumun/index.do?mode=sumun&menuId=13_91_93_94. Accessed on July 15, 2023.
  9. KHOA, Korea Hydrographic and Oceanographic Agency(2023), Ocean Data in Grid Framework, retrieved from http://www.khoa.go.kr/oceangrid/gis/category/observe/observeSearch.do?type=EYS. Accessed on July 15, 2023.
  10. Kim, J. H., S. E. Park, and W. C. Lee(2021), Modeling variation in residence time response to freshwater discharge in Gangjin Bay, Korea, Korean J. of Fish. and Aquat. Sci., 54(4), pp. 480-488.
  11. Kim, Y. J. and J. S. Yoon(2009), A study on the behavior of floating debris and fresh water diffusion according th discharge of Namgang Dam, J. of Ocean Engineering and Technology, 23(2), pp. 37-46.
  12. Kim, K. H.(2009), Problems with the Namgang Dam Redevelopment Project, The Gyeongnam Develpment, Vol. 99, pp. 28-38
  13. Lee, C. H.(2009), Numerical Modeling for the Winter Circulations and Particle Behavior in the Mid-Yellow SAea, Korea, Dep't of Oceanography, Graduate School Chungnam National Univ.
  14. My Water(2022), retrieved from https://www.water.or.kr/kor/menu/sub.do?menuId=13. Accessed on September 12, 2023.
  15. Park, S. E., S. J. Hong, and W. C. Lee(2009), Calculating average residence time distribution using a particle tracking model, J. of Ocean Engineering and Technology, 23(2), pp. 47-52.
  16. Ro, Y. J. and K. Y. Jung(2010), Impact of the Dam water discharge on the circulation system in the Kangjin Bay, South Sea, Korea. Ocean Sci. J., 45(1), pp. 17-35. https://doi.org/10.1007/s12601-010-0002-7
  17. Ro, Y. J., W. S. Jeon, K. Y. Jung, and H. M. Eom(2007), Numerical modeling of tide and tidal current in the Kangjin Bay, South Sea, Korea. Ocean Sci. J., 42(3), pp. 153-163. https://doi.org/10.1007/BF03020919
  18. Suh, S. W. and H. Y. Lee(2011), Analysis of Hydrodynamic change around the Saemangeum Area using a Particle Tracking Method, J. of Korean Soc. of Coastal and Ocean Engineers, 23(6), pp. 442-450. https://doi.org/10.9765/KSCOE.2011.23.6.442
  19. WAMIS(2023), retrieved from http://www.wamis.go.kr/wkd/mn_dammain.do. Accessed on July 15, 2023.
  20. Yeom, K. T.(2009), Namgang Dam flood control capacity increase and multi-regional waterworks project promotion, THE GYEONGNAM DEVELOPMENT, 99, pp. 6-18.