DOI QR코드

DOI QR Code

Antiviral activities of ginseng and its potential and putative benefits against monkeypox virus: A mini review

  • Rajib Chandra Das (Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW)) ;
  • Zubair Ahmed Ratan (Department of Biomedical Engineering, Khulna University of Engineering & Technology) ;
  • Md Mustafizur Rahman (Infectious Diseases Division, International Centre for Diarrhoeal Disease Research) ;
  • Nusrat Jahan Runa (Sylhet MAG Osmani Medical College) ;
  • Susmita Mondal (Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW)) ;
  • Konstantin Konstantinov (Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW)) ;
  • Hassan Hosseinzadeh (School of Health and Society, University of Wollongong) ;
  • Jae Youl Cho (Department of Integrative Biotechnology, Sungkyunkwan University)
  • 투고 : 2023.01.04
  • 심사 : 2023.03.28
  • 발행 : 2023.11.01

초록

Due to the Covid-19 pandemic more than 6 million people have died, and it has bought unprecedented challenges to our lives. The recent outbreak of monkeypox virus (MPXV) has brought out new tensions among the scientific community. Currently, there is no specific treatment protocol for MPXV. Several antivirals, vaccinia immune globulin (VIG) and smallpox vaccines have been used to treat MPXV. Ginseng, one of the more famous among traditional medicines, has been used for infectious disease for thousands of years. It has shown promising antiviral effects. Ginseng could be used as a potential adaptogenic agent to help prevent infection by MPXV along with other drugs and vaccines. In this mini review, we explore the possible use of ginseng in MPXV prevention based on its antiviral activity.

키워드

과제정보

This research was funded by The Korean Society of Ginseng (KSG) (2017 and 2018).

참고문헌

  1. Kugelman JR, Johnston SC, Mulembakani PM, Kisalu N, Lee MS, Koroleva G, et al. Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo. Emerg. Infect. Dis. 2014;20:232-9.
  2. Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox virus in Nigeria: infection biology, epidemiology, and evolution. Viruses 2020;12(11):1257.
  3. Likos AM, Sammons SA, Olson VA, Frace AM, Li Y, Olsen-Rasmussen M, et al. A tale of two clades: monkeypox viruses. J. Gen. Virol. 2005;86(10):2661-72. https://doi.org/10.1099/vir.0.81215-0
  4. Brown K, Leggat PA. Human monkeypox: current state of knowledge and implications for the future. Trop. Med. Infect. Dis. 2016;1(1):8.
  5. McCollum AM, Damon IK. Human monkeypox. Clin. Infect. Dis. 2014;58(2):260-7. https://doi.org/10.1093/cid/cit703
  6. Chen N, Li G, Liszewski MK, Atkinson JP, Jahrling PB, Feng Z, Buck C, Wang C, Lefkowitz EJ. Esposito J.J.,et al. Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology 2005;340(1):46-63. https://doi.org/10.1016/j.virol.2005.05.030
  7. Saijo M, Ami Y, Suzaki Y, Nagata N, Iwata N, Hasegawa H, Iizuka I, Shiota T, Sakai K, Ogata. M.,et al. Virulence and pathophysiology of the Congo Basin and West African strains of monkeypox virus in non-human primates. J. Gen. Virol. 2009;90(9):2266-71. https://doi.org/10.1099/vir.0.010207-0
  8. Magnus Pv, Andersen EK, Petersen KB, Birch-Andersen A. A pox-like disease in cynomolgus monkeys. Act. Pathol. Microbiol. Scand. 1959;46(2):156-76. https://doi.org/10.1111/j.1699-0463.1959.tb00328.x
  9. Doty JB, Malekani JM, LsN Kalemba, Stanley WT, Monroe BP, Nakazawa YU, Mauldin MR, Bakambana TL, Liyandja TLD. Braden Z.H., et al. Assessing monkeypox virus prevalence in small mammals at the human-animal interface in the Democratic Republic of the Congo. Viruses 2017;9(10):283.
  10. Marennikova SS, Seluhina EM, Mal'ceva NN, Cimiskjan KL, Macevic GR. Isolation and properties of the causal agent of a new variola-like disease (monkeypox) in man. Bull. World Health Organ. 1972;46(5):599-611.
  11. Petersen E, Kantele A, Koopmans M, Asogun D, Yinka-Ogunleye A, Ihekweazu C, Zumla A. Human monkeypox: epidemiologic and clinical characteristics, diagnosis, and prevention. Infect. Dis. Clin. 2019;33(4):1027-43. https://doi.org/10.1016/j.idc.2019.03.001
  12. Sklenovska N, Van Ranst M. Emergence of monkeypox as the most important Orthopoxvirus infection in humans. Front. Public Health 2018;6:241.
  13. Rimoin AW, Mulembakani PM, Johnston SC, Lloyd Smith JO, Kisalu NK, Kinkela TL, et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl. Acad. Sci. 2010;107(37):16262-7. https://doi.org/10.1073/pnas.1005769107
  14. Durski KN, McCollum AM, Nakazawa Y, Petersen BW, Reynolds MG, Briand S, et al. Emergence of monkeypox-west and central Africa, 1970-2017. Morb. Mortal. Wkly. Rep. 2018;67(10):306.
  15. Quiner CA, Moses C, Monroe BP, Nakazawa Y, Doty JB, Hughes CM, et al. Presumptive risk factors for monkeypox in rural communities in the Democratic Republic of the Congo. PLOS One 2017;12(2):e0168664.
  16. Fine PEM, Jezek Z, Grab B, Dixon H. The transmission potential of monkeypox virus in human populations. Int. J. Epidemiol. 1988;17(3):643-50. https://doi.org/10.1093/ije/17.3.643
  17. Yong SEF, Ng OT, Ho ZJM, Mak TM, Marimuthu K, Vasoo S, et al. Imported monkeypox, Singapore. Emerg. Infect. Dis. 2020;26(8):1826-30. https://doi.org/10.3201/eid2608.191387
  18. Hobson G, Adamson J, Adler H, Firth R, Gould S, Houlihan C, Johnson C, Porter D, Rampling T. Ratcliffe L.,et al. Family cluster of three cases of monkeypox imported from Nigeria to the United Kingdom, May 2021. Euro. Surveill. 2021;26(32):2100745.
  19. Rao AK, Schulte J, Chen TH, Hughes CM, Davidson W, Neff JM, et al. Monkeypox in a traveler returning from Nigeria - dallas, Texas, july 2021. Morb. Mortal. Wkly. Rep. 2022;71(14):509-16. https://doi.org/10.15585/mmwr.mm7114a1
  20. Costello V, Sowash M, Gaur A, Cardis M, Pasieka H, Wortmann G, et al. Imported monkeypox from international traveler, Maryland, USA, 2021. Emerg. Infect. Dis. 2022;28(5):1002-5. https://doi.org/10.3201/eid2805.220292
  21. Liu X, Zhu Z, He Y, Lim JW, Lane B, Wang H, et al. Monkeypox claims new victims: the outbreak in men who have sex with men. Infect. Dis. Poverty 2022;11(4):84.
  22. Monkeypox. https://www.who.int/news-room/fact-sheets/detail/monkeypox.
  23. Luo Q, Han J. Preparedness for a monkeypox outbreak. Infect. Med. 2022;1:124-34. https://doi.org/10.1016/j.imj.2022.07.001
  24. Zhu M, Ji J, Shi D, Lu X, Wang B, Wu N, Wu J, Yao H, Li L. Unusual global outbreak of monkeypox: what should we do? Front. Med. 2022;16(4):507-17. https://doi.org/10.1007/s11684-022-0952-z
  25. Alakunle EF, Okeke MI. Monkeypox virus: a neglected zoonotic pathogen spreads globally. Nat. Rev. Microbiol. 2022;20(9):507-8. https://doi.org/10.1038/s41579-022-00776-z
  26. Rahimi F, Talebi Bezmin Abadi A. The 2022 monkeypox outbreak: lessons from the 640 cases in 36 countries. Int. J. Surg. 2022;104:106712.
  27. Nair R, Sellaturay S, Sriprasad S. The history of ginseng in the management of erectile dysfunction in ancient China (3500-2600 BCE). Indian J. Urol. 2012;28(1):15-20. https://doi.org/10.4103/0970-1591.94946
  28. Ratan ZA, Youn SH, Kwak Y-S, Han C-K, Haidere MF, Kim JK, Min H, Jung YJ, Hosseinzadeh H, Hyun SH, et al. Adaptogenic effects of Panax ginseng on modulation of immune functions. J. Ginseng Res. 2021;45(1):32-40. https://doi.org/10.1016/j.jgr.2020.09.004
  29. Baek SH, Lee JG, Park SY, Bae ON, Kim DH, Park JH. Pectic polysaccharides from Panax ginseng as the antirotavirus principals in ginseng. Biomacromolecules 2010;11(8):2044-52. https://doi.org/10.1021/bm100397p
  30. Lee MH, Lee BH, Lee S, Choi C. Reduction of hepatitis A virus on FRhK-4 cells treated with Korean red ginseng extract and ginsenosides. J. Food Sci. 2013;78(9):M1412-5. https://doi.org/10.1111/1750-3841.12205
  31. Kim BR, Kim JE, Sung H, Cho YK. Long-term follow up of HIV-1-infected Korean haemophiliacs, after infection from a common source of virus. Haemophilia 2015;21(1):e1-11. https://doi.org/10.1111/hae.12527
  32. Seo JY, Lee CW, Choi DJ, Lee J, Lee JY, Park YI. Ginseng marc-derived low-molecular weight oligosaccharide inhibits the growth of skin melanoma cells via activation of RAW264.7 cells. Int. Immunopharmacolo. 2015;29(2):344-53. https://doi.org/10.1016/j.intimp.2015.10.031
  33. Kim MY, Cho JY. 20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages. J. Ginseng Res. 2013;37(3):293-9. https://doi.org/10.5142/jgr.2013.37.293
  34. Xin C, Quan H, Kim J-M, Hur Y-H, Shin J-Y, Bae H-B, et al. Ginsenoside Rb1 increases macrophage phagocytosis through p38 mitogen-activated protein kinase/Akt pathway. J. Ginseng Res. 2019;43(3):394-401. https://doi.org/10.1016/j.jgr.2018.05.003
  35. Wang Y, Liu Y, Zhang X-Y, Xu L-H, Ouyang D-Y, Liu K-P, et al. Ginsenoside Rg1 regulates innate immune responses in macrophages through differentially modulating the NF-κB and PI3K/Akt/mTOR pathways. Int. Immunopharmacol. 2014;23(1):7784.
  36. Shin M-S, Song JH, Choi P, Lee JH, Kim S-Y, Shin K-S, et al. Stimulation of innate immune function by Panax ginseng after heat processing. J. Agric. Food Chem. 2018;66(18):4652-9. https://doi.org/10.1021/acs.jafc.8b00152
  37. Wang J, Zuo G, Li J, Guan T, Li C, Jiang R, et al. Induction of tumoricidal activity in mouse peritoneal macrophages by ginseng polysaccharide. Int. J. Biol. Macromol. 2010;46(4):389-95. https://doi.org/10.1016/j.ijbiomac.2010.02.007
  38. Jang HI, Shin HM. Wild Panax ginseng (Panax ginseng C.A. Meyer) protects against methotrexate-induced cell regression by enhancing the immune response in RAW 264.7 macrophages. Am. J. Chin. Med. 2010;38(5):949-60. https://doi.org/10.1142/S0192415X10008378
  39. Kang S, Min H. Ginseng, the 'immunity boost': the effects of Panax ginseng on immune system. J Ginseng Res 2012;36(4):354-68. https://doi.org/10.5142/jgr.2012.36.4.354
  40. Wang H, Actor JK, Indrigo J, Olsen M, Dasgupta A. Asian and Siberian ginseng as a potential modulator of immune function: an in vitro cytokine study using mouse macrophages. Clin. Chim. Acta 2003;327:123-8. https://doi.org/10.1016/S0009-8981(02)00343-1
  41. You L, Cha S, Kim M-Y, Cho JY. Ginsenosides are active ingredients in Panax ginseng with immunomodulatory properties from cellular to organismal levels. J. Ginseng Res. 2022;46(6):711-21. https://doi.org/10.1016/j.jgr.2021.12.007
  42. Kim M-H, Byon Y-Y, Ko E-J, Song J-Y, Yun Y-S, Shin T. Joo H.-G. Immunomodulatory activity of ginsan, a polysaccharide of Panax ginseng, on dendritic cells. Korean J. Physiol. Pharmacol. 2009;13(3):169-73. https://doi.org/10.4196/kjpp.2009.13.3.169
  43. Wang Z, Meng J, Xia Y, Meng Y, Du L, Zhang Z, et al. Maturation of murine bone marrow dendritic cells induced by acidic Ginseng polysaccharides. Int. J. Biol. Macromol. 2013;53:93-100. https://doi.org/10.1016/j.ijbiomac.2012.11.009
  44. Tung NH, Quang TH, Son J-H, Koo J-E, Hong H-J, Koh Y-S, Song GY, Kim YH. Inhibitory effect of ginsenosides from steamed ginseng-leaves and flowers on the LPS-stimulated IL-12 production in bone marrow-derived dendritic cells. Arch. Pharm. Res. 2011;34:681-5. https://doi.org/10.1007/s12272-011-0419-2
  45. Hong SH, Suk KT, Choi SH, Lee JW, Sung HT, Kim CH, Kim EJ, Kim MJ, Han SH, Kim MY, et al. Anti-oxidant and natural killer cell activity of Korean red ginseng (Panax ginseng) and urushiol (Rhus vernicifera Stokes) on nonalcoholic fatty liver disease of rat. Food Chem. Toxicol. 2013;55:586-91. https://doi.org/10.1016/j.fct.2013.01.022
  46. Miller SC, Ti L, Shan J. Dietary supplementation with an extract of North American ginseng in adult and juvenile mice increases natural killer cells. Immunol. Invest. 2012;41(2):157-70. https://doi.org/10.3109/08820139.2011.599087
  47. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 2015;16:343-53. https://doi.org/10.1038/ni.3123
  48. Liou C-J, Huang W-C, Tseng J. Short-term oral administration of ginseng extract induces type-1 cytokine production. Immunopharmacol. Immunotoxicol. 2006;28(2):227-40. https://doi.org/10.1080/08923970600816681
  49. Jie YH, Cammisuli S, Baggiolini M. Immunomodulatory effects of Panax ginseng C.A. Meyer in the mouse. Agents Actions Suppl. 1984;15:386-91. https://doi.org/10.1007/BF01972376
  50. Park H-Y, Lee S-H, Lee K-S, Yoon H-K, Yoo Y-C, Lee J, et al. Ginsenoside Rg1 and 20(S)-Rg3 induce IgA production by mouse B cells. Immune Netw. 2015;15(6):331-6. https://doi.org/10.4110/in.2015.15.6.331
  51. Heo SB, Lim SW, Jhun JY, Cho ML, Chung BH, Yang CW. Immunological benefits by ginseng through reciprocal regulation of Th17 and Treg cells during cyclosporine-induced immunosuppression. J. Ginseng Res. 2016;40(1):18-27. https://doi.org/10.1016/j.jgr.2015.04.005
  52. Vinh LB, Park JU, Duy LX, Nguyet NTM, Yang SY, Kim YR, et al. Ginsenosides from Korean red ginseng modulate T cell function via the regulation of NF-AT-mediated IL-2 production. Food Sci. Biotechnol. 2019;28:237-42. https://doi.org/10.1007/s10068-018-0428-8
  53. Tran T-L, Kim Y-R, Yang J-L, Oh D-R, Dao T-T, Oh W-K. Dammarane triterpenes from the leaves of Panax ginseng enhance cellular immunity. Bioorg. Med. Chem. 2014;22(1):499-504. https://doi.org/10.1016/j.bmc.2013.11.002
  54. Berek L, Szabo D, Petri IB, Shoyama Y, Lin YH, Molnar J. Effects of naturally occurring glucosides, solasodine glucosides, ginsenosides and parishin derivatives on multidrug resistance of lymphoma cells and leukocyte functions. Vivo 2001;15(2):151-6.
  55. Lee E-j, Ko E, Lee J, Rho S, Ko S, Shin M-K, et al. Ginsenoside Rg1 enhances CD4+ T-cell activities and modulates Th1/Th2 differentiation. Int. Immunopharmacol. 2004;4(2):235-44. https://doi.org/10.1016/j.intimp.2003.12.007
  56. He L-X, Ren J-W, Liu R, Chen Q-H, Zhao J, Wu X, et al. Ginseng (Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune responses in mice via increased macrophage phagocytosis capacity, NK cell activity and Th cells secretion. Food Funct. 2017;8(10):3523-32. https://doi.org/10.1039/C7FO00957G
  57. Lee JS, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC, et al. Immunomodulatory activity of red ginseng against influenza a virus infection. Nutrients 2014;6(2):517-29. https://doi.org/10.3390/nu6020517
  58. Yoo D-G, Kim M-C, Park M-K, Park K-M, Quan F-S, Song J-M, et al. Protective effect of ginseng polysaccharides on influenza viral infection. PLOS ONE 2012;7(3):e33678.
  59. Yoo D-G, Kim M-C, Park M-K, Song J-M, Quan F-S, Park K-M, et al. Protective effect of Korean red ginseng extract on the infections by H1N1 and H3N2 influenza viruses in mice. J. Med. Food 2012;15(10):855-62. https://doi.org/10.1089/jmf.2012.0017
  60. Park EH, Yum J, Ku KB, Kim HM, Kang YM, Kim JC, et al. Red Ginseng-containing diet helps to protect mice and ferrets from the lethal infection by highly pathogenic H5N1 influenza virus. J. Ginseng Res. 2014;38(1):40-6. https://doi.org/10.1016/j.jgr.2013.11.012
  61. Abdullahi AY, Kallon S, Yu X, Zhang Y, Li G. Vaccination with Astragalus and ginseng polysaccharides improves immune response of chickens against H5N1 avian influenza virus. BioMed. Res. Int. 2016;2016:1510264.
  62. Kim H, Jang M, Kim Y, Choi J, Jeon J, Kim J, Hwang Y-I, Kang JS, Lee WJ. Red ginseng and vitamin C increase immune cell activity and decrease lung inflammation induced by influenza A virus/H1N1 infection. J. Pharm. Pharmacol. 2016;68(3):406-20. https://doi.org/10.1111/jphp.12529
  63. Kim J-Y, Kim H-J, Kim H-J. Effect of oral administration of Korean red ginseng on influenza A (H1N1) virus infection. J. Ginseng Res. 2011;35(1):104-10. https://doi.org/10.5142/jgr.2011.35.1.104
  64. Wang Y, Jung Y-J, Kim K-H, Kwon Y, Kim Y-J, Zhang Z, et al. Antiviral activity of fermented ginseng extracts against a broad range of influenza viruses. Viruses 2018;10(9):471. https://doi.org/10.3390/v10090471
  65. Cho YK, Sung H, Lee HJ, Hyun Joo C, Jae Cho G. Long-term intake of Korean red ginseng in HIV-1-infected patients: development of resistance mutation to zidovudine is delayed. Int. Immunopharmacol. 2001;1(7):1295-305. https://doi.org/10.1016/S1567-5769(01)00061-3
  66. Cho Y-K, Sung H, Kim TK, Lim JY, Jung YS, Kang S-M. Korean red ginseng significantly slows CD4 T cell depletion over 10 years in HIV-1 infected patients: association with HLA. J. Ginseng Res. 2004;28(4):173-82. https://doi.org/10.5142/JGR.2004.28.4.173
  67. Sung H, Kang S-M, Lee M-S, Kim TG, Cho Y-K. Korean red ginseng slows depletion of CD4 T cells in human immunodeficiency virus type 1-infected patients. Clin. Vac. Immunol. 2005;12(4):497-501. https://doi.org/10.1128/CDLI.12.4.497-501.2005
  68. Cho Y-K, Kim J-E. Effect of Korean Red Ginseng intake on the survival duration of human immunodeficiency virus type 1 patients. J. Ginseng Res. 2017;41(2):222-6. https://doi.org/10.1016/j.jgr.2016.12.006
  69. Sung H, Jung Y-S, Cho Y-K. Beneficial effects of a combination of Korean red ginseng and highly active antiretroviral therapy in human immunodeficiency virus type 1-infected patients. Clin. Vac. Immunol. 2009;16(8):1127-31. https://doi.org/10.1128/CVI.00013-09
  70. Cho YK, Kim J-E, Woo J-H. Korean Red Ginseng increases defective pol gene in peripheral blood mononuclear cells of HIV-1einfected patients; inhibition of its detection during ginseng-based combination therapy. J. Ginseng Res. 2019;43(4):684-91. https://doi.org/10.1016/j.jgr.2019.05.011
  71. Cho Y-K, Kim J-E, Lee J. Impact of HIV-1 subtypes on gross deletion in the nef gene after Korean Red Ginseng treatment. J. Ginseng Res. 2022;46(6):731-7. https://doi.org/10.1016/j.jgr.2022.02.005
  72. Jeong J-J, Kim B, Kim D-H. Ginsenoside Rb1 eliminates HIV-1 (D3)-Transduced cytoprotective human macrophages by inhibiting the AKT pathway. J. Med. Food 2014;17(8):849-54. https://doi.org/10.1089/jmf.2013.3020
  73. Cho Y-K, Sung H-S. Effect of Korean Red Ginseng on serum soluble CD8 in HIV-1-infected patients. J. Ginseng Res. 2007;31(4):175-80. https://doi.org/10.5142/JGR.2007.31.4.175
  74. Lee JS, Ko E-J, Hwang HS, Lee Y-N, Kwon Y-M, Kim M-C, et al. Antiviral activity of ginseng extract against respiratory syncytial virus infection. Int. J. Mol. Med. 2014;34(1):183-90. https://doi.org/10.3892/ijmm.2014.1750
  75. Lee JS, Lee Y-N, Lee Y-T, Hwang HS, Kim K-H, Ko E-J, Kim M-C, Kang S-M. Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication. Nutrients 2015;7(2):1021-36. https://doi.org/10.3390/nu7021021
  76. Lee JS, Cho MK, Hwang HS, Ko E-J, Lee Y-N, Kwon Y-M, et al. Ginseng diminishes lung disease in mice immunized with formalin-inactivated respiratory syncytial virus after challenge by modulating host immune responses. J. Interferon Cytokine Res. 2014;34(11):902-14. https://doi.org/10.1089/jir.2013.0093
  77. Pei Y, Du Q, Liao P-Y, Chen Z-P, Wang D, Yang C-R, et al. Notoginsenoside ST-4 inhibits virus penetration of herpes simplex virus in vitro. J. Asian Nat. Prod. Res. 2011;13(6):498-504. https://doi.org/10.1080/10286020.2011.571645
  78. Im K, Kim J, Min H. Ginseng, the natural effectual antiviral: protective effects of Korean Red Ginseng against viral infection. J. Ginseng Res. 2016;40(4):309-14. https://doi.org/10.1016/j.jgr.2015.09.002
  79. Cho A, Roh YS, Uyangaa E, Park S, Kim JW, Lim KH, Kwon J, Eo SK, Lim CW, Kim B. Protective effects of red ginseng extract against vaginal herpes simplex virus infection. J. Ginseng Res. 2013;37(2):210-8. https://doi.org/10.5142/jgr.2013.37.210
  80. Lee MH, Lee B-H, Lee S, Choi C. Reduction of hepatitis A virus on FRhK-4 cells treated with Korean red ginseng extract and ginsenosides. J. Food Sci. 2013;78(9):M1412-5. https://doi.org/10.1111/1750-3841.12205
  81. Choi S-H, Yang K-J, Lee D-S. Effects of complementary combination therapy of Korean red ginseng and antiviral agents in chronic hepatitis B. J. Alt. Complement. Med. 2016;22(12):964-9. https://doi.org/10.1089/acm.2015.0206
  82. Kang L-J, Choi Y-J, Lee S-G. Stimulation of TRAF6/TAK1 degradation and inhibition of JNK/AP-1 signalling by ginsenoside Rg3 attenuates hepatitis B virus replication. Int. J. Biochem. Cell Biol. 2013;45(11):2612-21. https://doi.org/10.1016/j.biocel.2013.08.016
  83. Baek S-H, Lee JG, Park SY, Bae ON, Kim D-H, Park JH. Pectic polysaccharides from Panax ginseng as the antirotavirus principals in ginseng. Biomacromolecules 2010;11(8):2044-52. https://doi.org/10.1021/bm100397p
  84. Yang H, Oh K-H, Kim HJ, Cho YH, Yoo YC. Ginsenoside-Rb2 and 20(S)-Ginsenoside-Rg3 from Korean red ginseng prevent rotavirus infection in newborn mice. J. Microbiol. Biotechnol. 2018;28:391-6. https://doi.org/10.4014/jmb.1801.01006
  85. Song J-H, Choi H-J, Song H-H, Hong E-H, Lee B-R, Oh S-R, Choi K, Yeo S-G, Lee Y-P, Cho S, et al. Antiviral activity of ginsenosides against coxsackievirus B3, enterovirus 71, and human rhinovirus 3. J. Ginseng Res. 2014;38(3):173-9. https://doi.org/10.1016/j.jgr.2014.04.003
  86. Kang N, Gao H, He L, Liu Y, Fan H, Xu Q, et al. Ginsenoside Rb1 is an immune-stimulatory agent with antiviral activity against enterovirus 71. J. Ethnopharmacol. 2021;266:113401.
  87. Fallah MS, Bayati M, Najafi A, Behmard E, Davarpanah SJ. Molecular docking investigation of antiviral herbal compounds as potential inhibitors of sarscov-2 spike receptor. Biointerface Res. Appl. Chem. 2021;11(5):12916-24. https://doi.org/10.33263/BRIAC115.1291612924
  88. Teitelbaum J, Goudie S. An open-label, pilot trial of HRG80™ red ginseng in chronic fatigue syndrome, fibromyalgia, and post-viral fatigue. Pharmaceuticals 2022;15(1):43.
  89. Lee J-H, Lee J-H, Lee Y-M, Kim P-N, Jeong C-S. Potential analgesic and anti-inflammatory activities of Panax ginseng head butanolic fraction in animals. Food Chem. Toxicol. 2008;46(12):3749-52. https://doi.org/10.1016/j.fct.2008.09.055
  90. Choi K-t. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sinica 2008;29(9):1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  91. Kim Y-R, Yang C-S. Protective roles of ginseng against bacterial infection. Microb. Cell 2018;5(11):472.
  92. Iqbal H, Rhee D-K. Ginseng alleviates microbial infections of the respiratory tract: a review. J. Ginseng Res. 2020;44(2):194-204. https://doi.org/10.1016/j.jgr.2019.12.001
  93. Potenza M.A., Montagnani M., Santacroce L., Charitos I.A., Bottalico L. Ancient herbal therapy: a brief history of Panax ginseng. J. Ginseng Res. 2022. In press. https://doi.org/10.1016/j.jgr.2022.03.004.
  94. Quan FS, Compans RW, Cho Y-K, Kang S-M. Ginseng and Salviae herbs play a role as immune activators and modulate immune responses during influenza virus infection. Vaccine 2007;25(2):272-82. https://doi.org/10.1016/j.vaccine.2006.07.041
  95. Wei Y, Ma C-M, Hattori M. Anti-HIV protease triterpenoids from the acid hydrolysate of Panax ginseng. Phytochem. Lett. 2009;2(2):63-6. https://doi.org/10.1016/j.phytol.2008.12.001
  96. Cho Y-K, Kim J-E, Lee J. Korean red ginseng slows coreceptor switch in HIV-1 infected patients. J. Ginseng Res. 2022;47(1):117-22.
  97. Cho YK, Lim JY, Jung YS, Oh SK, Lee HJ, Sung H. High frequency of grossly deleted nef genes in HIV-1 infected long-term slow progressors treated with Korean red ginseng. Curr. HIV Res. 2006;4(4):447-57. https://doi.org/10.2174/157016206778560072
  98. Cho YK, Jung YS, Sung H. Frequent gross deletion in the HIV type 1 nef gene in hemophiliacs treated with Korean red ginseng: inhibition of detection by highly active antiretroviral therapy. AIDS Res. Human Retroviruses 2009;25(4):419-24. https://doi.org/10.1089/aid.2008.0178
  99. Fallah MS, Bayati M, Najafi A, Behmard E, Davarpanah S. Molecular docking investigation of antiviral herbal compounds as potential inhibitors of SARS-CoV-2 spike receptor. Biointerface Res. Appl. Chem. 2021;11(5):12916-24. https://doi.org/10.33263/BRIAC115.1291612924