DOI QR코드

DOI QR Code

The purified extract of steamed Panax ginseng protects cardiomyocyte from ischemic injury via caveolin-1 phosphorylation-mediating calcium influx

  • Hai-Xia Li (School of Pharmaceutical Sciences, Zhengzhou University) ;
  • Yan Ma (School of Pharmaceutical Sciences, Zhengzhou University) ;
  • Yu-Xiao Yan (School of Pharmaceutical Sciences, Zhengzhou University) ;
  • Xin-Ke Zhai (School of Pharmaceutical Sciences, Zhengzhou University) ;
  • Meng-Yu Xin (School of Pharmaceutical Sciences, Zhengzhou University) ;
  • Tian Wang (School of Pharmaceutical Sciences, Zhengzhou University) ;
  • Dong-Cao Xu (School of Pharmaceutical Sciences, Zhengzhou University) ;
  • Yu-Tong Song (School of Pharmaceutical Sciences, Zhengzhou University) ;
  • Chun-Dong Song (The First Affiliated Hospital of Henan University of Traditional Chinese Medicine) ;
  • Cheng-Xue Pan (School of Pharmaceutical Sciences, Zhengzhou University)
  • Received : 2022.09.01
  • Accepted : 2023.07.07
  • Published : 2023.11.01

Abstract

Background: Caveolin-1, the scaffolding protein of cholesterol-rich invaginations, plays an important role in store-operated Ca2+ influx and its phosphorylation at Tyr14 (p-caveolin-1) is vital to mobilize protection against myocardial ischemia (MI) injury. SOCE, comprising STIM1, ORAI1 and TRPC1, contributes to intracellular Ca2+ ([Ca2+]i) accumulation in cardiomyocytes. The purified extract of steamed Panax ginseng (EPG) attenuated [Ca2+]i overload against MI injury. Thus, the aim of this study was to investigate the possibility of EPG affecting p-caveolin-1 to further mediate SOCE/[Ca2+]i against MI injury in neonatal rat cardiomyocytes and a rat model. Methods: PP2, an inhibitor of p-caveolin-1, was used. Cell viability, [Ca2+]i concentration were analyzed in cardiomyocytes. In rats, myocardial infarct size, pathological damages, apoptosis and cardiac fibrosis were evaluated, p-caveolin-1 and STIM1 were detected by immunofluorescence, and the levels of caveolin-1, STIM1, ORAI1 and TRPC1 were determined by RT-PCR and Western blot. And, release of LDH, cTnI and BNP was measured. Results: EPG, ginsenosides accounting for 57.96%, suppressed release of LDH, cTnI and BNP, and protected cardiomyocytes by inhibiting Ca2+ influx. And, EPG significantly relieved myocardial infarct size, cardiac apoptosis, fibrosis, and ultrastructure abnormality. Moreover, EPG negatively regulated SOCE via increasing p-caveolin-1 protein, decreasing ORAI1 mRNA and protein levels of ORAI1, TRPC1 and STIM1. More importantly, inhibition of the p-caveolin-1 significantly suppressed all of the above cardioprotection of EPG. Conclusions: Caveolin-1 phosphorylation is involved in the protective effects of EPG against MI injury via increasing p-caveolin-1 to negatively regulate SOCE/[Ca2+]i.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 81973727 & 82074493), the Programs of Innovation and Entrepreneurship for Undergraduates of Henan Province (Grant No. S202110459059).

References

  1. Schirone L, Forte M, D'Ambrosio L, Valenti V, Vecchio D, Schiavon S, Spinosa G, Sarto G, Petrozza V, Frati G, et al. An Overview of the molecular mechanisms associated with myocardial ischemic injury: state of the art and translational perspectives. Cells 2022;11:1165.
  2. Liu ZY, Zhong QW, Tian CN, Ma HM, Yu JJ, Hu S. NMDA receptor-driven calcium influx promotes ischemic human cardiomyocyte apoptosis through a p38 MAPK-mediated mechanism. J Cell Biochem 2019;120:4872-82. https://doi.org/10.1002/jcb.27702
  3. Ma JQ, Chen ZW, Ma YJ, Xia Y, Hu K, Zhou Y, Chen A, Qian JY, Ge JB. MicroRNA19a attenuates hypoxia-induced cardiomyocyte apoptosis by downregulating NHE-1 expression and decreasing calcium overload. J Cell Biochem 2020;121:1747-58. https://doi.org/10.1002/jcb.29411
  4. Wang P, Xu S, Xu J, Xin Y, Lu Y, Zhang H, Zhou B, Xu H, Sheu SS, Tian R, et al. Elevated MCU expression by CaMKIIdB limits pathological cardiac remodeling. Circulation 2022;145:1067-83. https://doi.org/10.1161/CIRCULATIONAHA.121.055841
  5. Lu T, Zhang Y, Su Y, Zhou D, Xu Q. Role of store-operated Ca2+ entry in cardiovascular disease. Cell Commun Signal 2022;20:33.
  6. Bootman MD, Rietdorf K. Tissue specificity: store-operated Ca2+ entry in cardiac myocytes. Adv Exp Med Biol 2017;993:363-87. https://doi.org/10.1007/978-3-319-57732-6_19
  7. Ambudkar IS, de Souza LB, Ong HL. TRPC1, Orai1, and STIM1 in SOCE: friends in tight spaces. Cell Calcium 2017;63:33-9. https://doi.org/10.1016/j.ceca.2016.12.009
  8. Correll RN, Goonasekera SA, van Berlo JH, Burr AR, Accornero F, Zhang HY, Makarewich CA, York AJ, Sargent MA, Chen XW, et al. STIM1 elevation in the heart results in aberrant Ca2+ handling and cardiomyopathy. J Mol Cell Cardiol 2015;87:38-47. https://doi.org/10.1016/j.yjmcc.2015.07.032
  9. Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 2008;454:538-42. https://doi.org/10.1038/nature07065
  10. Jardin I, Albarran L, Salido GM, Lopez JJ, Sage SO, Rosado JA. Fine-tuning of store-operated calcium entry by fast and slow Ca2+-dependent inactivation: involvement of SARAF. Biochim Biophys Acta Mol Cell Res 2018;1865:463-9. https://doi.org/10.1016/j.bbamcr.2017.12.001
  11. Collins HE, Zhu-Mauldin X, Marchase RB, Chatham JC. STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology. Am J Physiol Heart Circ Physiol 2013;305:H446-58. https://doi.org/10.1152/ajpheart.00104.2013
  12. Eisner DA, Caldwell JL, Kistamas K, Trafford AW. Calcium and excitation-contraction coupling in the heart. Circ Res 2017;121:181-95. https://doi.org/10.1161/CIRCRESAHA.117.310230
  13. Nan J, Li J, Lin Y, Saif Ur Rahman M, Li Z, Zhu L. The interplay between mitochondria and store-operated Ca2+ entry: emerging insights into cardiac diseases. J Cell Mol Med 2021;25:9496-512. https://doi.org/10.1111/jcmm.16941
  14. Norman R, Fuller W, Calaghan S. Caveolae and the cardiac myocyte. Curr Opin Physiol 2018;1:59-67. https://doi.org/10.1016/j.cophys.2017.08.005
  15. Yang Y, Ma Z, Hu W, Wang D, Jiang S, Fan C, Di S, Liu D, Sun Y, Yi W. Caveolin1/-3: therapeutic targets for myocardial ischemia/reperfusion injury. Basic Res Cardiol 2016;111:45.
  16. Sowa G. Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol 2012;2:120.
  17. Yeh YC, Parekh AB. Distinct structural domains of caveolin-1 independently regulate Ca2+ release-activated Ca2+ channels and Ca2+ microdomain-dependent gene expression. Mol Cell Biol 2015;35:1341-9. https://doi.org/10.1128/MCB.01068-14
  18. Takaguri A, Kamato M, Satoh Y, Ohtsuki K, Satoh K. Effect of alteration of caveolin-1 expression on doxorubicin-induced apoptosis in H9c2 cardiac cells. Cell Biol Int 2015;39:1053-60. https://doi.org/10.1002/cbin.10478
  19. Gao Y, Chu M, Hong J, Shang J, Xu D. Hypoxia induces cardiac fibroblast proliferation and phenotypic switch: a role for caveolae and caveolin-1/PTEN mediated pathway. J Thorac Dis 2014;6:1458-68.
  20. Li HX, Han SY, Ma X, Zhang K, Wang L, Ma ZZ, Tu PF. The saponin of red ginseng protects the cardiac myocytes against ischemic injury in vitro and in vivo. Phytomedicine 2012;19:477-83. https://doi.org/10.1016/j.phymed.2012.01.002
  21. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  22. Wen Z, Mai Z, Zhu X, Wu T, Chen Y, Geng D, Wang J. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Res Ther 2020;11:36.
  23. Bakhshi FR, Mao M, Shajahan AN, Piegeler T, Chen Z, Chernaya O, Sharma T, Elliott WM, Szulcek R, Bogaard HJ, et al. Nitrosation-dependent caveolin 1 phosphorylation, ubiquitination, and degradation and its association with idiopathic pulmonary arterial hypertension. Pulm Circ 2013;3:816-30. https://doi.org/10.1086/674753
  24. Dong Y, Chen HW, Gao JL, Liu YM, Li J, Wang J. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 2019;136:27-41. https://doi.org/10.1016/j.yjmcc.2019.09.001
  25. Tardy AL, Bois De Fer B, Canigueral S, Kennedy D, Scholey A, Hitier S, Aran A, Pouteau E. Reduced self-perception of fatigue after intake of Panax ginseng root extract (G115(®)) formulated with vitamins and minerals-an open-label study. Int J Environ Res Public Health 2021;18:6257.
  26. Chen YM, Wang IL, Zhou S, Tsai TY, Chiu YS, Chiu WC. Six weeks of Jilin ginseng root supplementation attenuates drop jump-related muscle injury markers in healthy female college students. Food Funct 2021;12:1458-68. https://doi.org/10.1039/D0FO03146A
  27. Lee ES, Yang YJ, Lee JH, Yoon YS. Effect of high-dose ginsenoside complex (UG0712) supplementation on physical performance of healthy adults during a 12-week supervised exercise program: a randomized placebo-controlled clinical trial. J Ginseng Res 2018;42:192-8. https://doi.org/10.1016/j.jgr.2017.03.001
  28. Hitier S, Aran A, Pouteau E, Kim JY, Park JY, Kang HJ, Kim OY, Lee JH. Beneficial effects of Korean red ginseng on lymphocyte DNA damage, antioxidant enzyme activity, and LDL oxidation in healthy participants: a randomized, double-blind, placebo-controlled trial. Int J Environ Res Public Health 2012;11:47.
  29. Lee NH, Jung HC, Lee S. Red ginseng as an ergogenic aid: a systematic review of clinical trials. J Exerc Nutrition Biochem 2016;20:13-9. https://doi.org/10.20463/jenb.2016.0034
  30. Reay JL, Scholey AB, Milne A, Fenwick J, Kennedy DO. Panax ginseng has no effect on indices of glucose regulation following acute or chronic ingestion in healthy volunteers. Br J Nutr 2009;101:1673-8. https://doi.org/10.1017/S0007114508123418
  31. Ghavami A, Ziaei R, Foshati S, Hojati Kermani MA, Zare M, Amani R. Benefits and harms of ginseng supplementation on liver function? A systematic review and meta-analysis. Complement Ther Clin Pract 2020;39:101173.
  32. Irfan M, Kwak YS, Han CK, Hyun SH, Rhee MH. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions. J Ginseng Res 2020;44:538-43. https://doi.org/10.1016/j.jgr.2020.03.001
  33. Park SH, Chung S, Chung MY, Choi HK, Hwang JT, Park JH. Effects of Panax ginseng on hyperglycemia, hypertension, and hyperlipidemia: a systematic review and meta-analysis. J Ginseng Res 2022;46:188-205. https://doi.org/10.1016/j.jgr.2021.10.002
  34. Schilling JM, Roth DM, Patel HH. Caveolins in cardioprotection - translatability and mechanisms. Br J Pharmacol 2015;172:2114-25. https://doi.org/10.1111/bph.13009
  35. Patel HH, Tsutsumi YM, Head BP, Niesman IR, Jennings M, Horikawa Y, Huang D, Moreno AL, Patel PM, Insel PA, et al. Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J 2007;21:1565-74. https://doi.org/10.1096/fj.06-7719com
  36. Jasmin JF, Rengo G, Lymperopoulos A, Gupta R, Eaton GJ, Quann K, Gonzales DM, Mercier I, Koch WJ, Lisanti MP. Caveolin-1 deficiency exacerbates cardiac dysfunction and reduces survival in mice with myocardial infarction. Am J Physiol Heart Circ Physiol 2011;300:H1274-81. https://doi.org/10.1152/ajpheart.01173.2010
  37. Yun U-J, Lee J-H, Koo KH, Ye S-K, Kim S-Y, Lee C-H, Kim Y-N. Lipid raft modulation by Rp1 reverses multidrug resistance via inactivating MDR-1 and Src inhibition. Biochem Pharmacol 2013;85:1441-53. https://doi.org/10.1016/j.bcp.2013.02.025
  38. Fathil MF, Md Arshad MK, Gopinath SC, Hashim U, Adzhri R, Ayub RM, Ruslinda AR, Nuzaihan MNM, Azman AH, Zaki M, et al. Diagnostics on acute myocardial infarction: cardiac troponin biomarkers. Biosens Bioelectron 2015;70:209-20. https://doi.org/10.1016/j.bios.2015.03.037
  39. Takahashi N, Ogita M, Suwa S, Nakao K, Ozaki Y, Kimura K, Ako J, Noguchi T, Yasuda S, Fujimoto K, et al. Prognostic impact of B-type natriuretic peptide on long-term clinical outcomes in patients with non-ST-segment elevation acute myocardial infarction without creatine kinase elevation. Int Heart J 2020;61:888-95. https://doi.org/10.1536/ihj.20-190
  40. Chen X, Zhang X, Kubo H, Harris DM, Mills GD, Moyer J, Berretta R, Potts ST, Marsh JD, Houser SR. Ca2+ influx-induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circ Res 2005;97:1009-17. https://doi.org/10.1161/01.RES.0000189270.72915.D1
  41. Zhong GG, Sun CW, Li YY, Qi H, Zhao CY, Jiang Y, Wang XM, Yang SJ, Li H. Calcium channel blockade and anti-free-radical actions of panaxadiol saponins Rb1, Rb2, Rb3, Rc, and Rd. Acta Pharmacologica Sinica 1995;16:255-60.
  42. Liu Z, Song L, Zhang P, Cao Z, Hao J, Tian Y, Luo A, Zhang P, Ma J. Ginsenoside Rb1 exerts antiarrhythmic effects by inhibiting INa and ICaL in rabbit ventricular myocytes. Sci Rep 2019;9:20425.
  43. Lu C, Sun Z, Wang L. Inhibition of L-type Ca2+ current by ginsenoside Rd in rat ventricular myocytes. J Ginseng Res 2015;39:169-77. https://doi.org/10.1016/j.jgr.2014.11.003
  44. Zhang WJ, Li L, Zhao CY, Li X, Zhao M, Zhong GG. Effects of panaxadiol saponins monomer Rb1 on action potential and L-type calcium channel in ischemic cardiomyocytes. J Jilin Univ Med Edit 2007:978-81.
  45. Lee JH, Jeong SM, Kim JH, Lee BH, Yoon IS, Lee JH, Choi SH, Lee SM, Park YS, Lee JH, et al. Effects of ginsenosides and their metabolites on voltage-dependent Ca2+ channel subtypes. Mol Cells 2006;21:52-62. https://doi.org/10.1016/s1016-8478(23)12902-5
  46. He F, Wu Q, Xu B, Wang X, Wu J, Huang L, Cheng J. Suppression of Stim1 reduced intracellular calcium concentration and attenuated hypoxia/reoxygenation induced apoptosis in H9C2 cells. Biosci Rep 2017;37.
  47. Tian W, Liu SY, Zhang M, Meng JR, Tang N, Feng YD, Sun Y, Gao YY, Zhou L, Cao W, et al. TRPC1 contributes to endotoxemia-induced myocardial dysfunction via mediating myocardial apoptosis and autophagy. Pharmacol Res 2022;181:106262.
  48. Chen Z, Wu J, Li S, Liu C, Ren Y. Inhibition of myocardial cell apoptosis is important mechanism for ginsenoside in the limitation of myocardial ischemia/reperfusion injury. Front Pharmacol 2022;13:806216.
  49. Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS. Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 2003;278:27208-272015. https://doi.org/10.1074/jbc.M301118200
  50. Chaudhary KR, Cho WJ, Yang F, Samokhvalov V, El-Sikhry HE, Daniel EE, Seubert JM. Effect of ischemia reperfusion injury and epoxyeicosatrienoic acids on caveolin expression in mouse myocardium. J Cardiovasc Pharmacol 2013;61:258-63. https://doi.org/10.1097/FJC.0b013e31827afcee
  51. Schilling JM, Dhanani M, Haushalter KJ, Howell SA, Verma R, Niesman IR, Zemljic-Harpf AE, Patel HH. Loss of caveolin-1 alters cardiac mitochondrial function and increases susceptibility to stress. J Mol Cell Cardiol 2017;112. 165-165. https://doi.org/10.1016/j.yjmcc.2017.07.103
  52. Singh S, Mabalirajan U. Mitochondrial calcium in command of juggling myriads of cellular functions. Mitochondrion 2021;57:108-18. https://doi.org/10.1016/j.mito.2020.12.011
  53. Shivshankar P, Halade GV, Calhoun C, Escobar GP, Mehr AJ, Jimenez F, Martinez C, Bhatnagar H, Mjaatvedt CH, Lindsey ML, et al. Caveolin-1 deletion exacerbates cardiac interstitial fibrosis by promoting M2 macrophage activation in mice after myocardial infarction. J Mol Cell Cardiol 2014;76:84-93. https://doi.org/10.1016/j.yjmcc.2014.07.020
  54. Wang Q, Fu W, Yu X, Xu H, Sui D, Wang Y. Ginsenoside Rg2 alleviates myocardial fibrosis by regulating TGF-b1/Smad signalling pathway. Pharm Biol 2021;59:106-13. https://doi.org/10.1080/13880209.2020.1867197
  55. Wang QW, Yu XF, Xu HL, Zhao XZ. Ginsenoside Re improves isoproterenol-induced myocardial fibrosis and heart failure in rats. Evid Based Complement Alternat Med 2019:3714508.
  56. Lai Q, Liu FM, Rao WL, Yuan GY, Fan ZY, Zhang L, et al. Aminoacylase-1 plays a key role in myocardial fibrosis and the therapeutic effects of 20(S)-ginsenoside Rg3 in mouse heart failure. Acta Pharmacol Sin 2022;43(8):2003-2015. https://doi.org/10.1038/s41401-021-00830-1
  57. Irfan M, Kim M, Rhee MH. Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases. J Ginseng Res 2020;44:24-32. https://doi.org/10.1016/j.jgr.2019.05.005
  58. Li W, Wu Y, Cai S, Tang C. Comparative effects of decreasing viscosity in different preparations of Chinese angelica root and ginseng. Zhong Yao Cai 2001;24:581-3.
  59. Chen IJ, Chang MY, Chiao SL, Chen JL, Yu CC, Yang SH, Liu JM, Hung CC, Yang RC, Chang HC, et al. Korean red ginseng improves blood pressure stability in patients with intradialytic hypotension. Evid Based Complement Alternat Med 2012;2012:595271.
  60. Yu Z, Han SY, Li HX, Tu PF. Effects of ginseng and safflower extractions on blood stream kinetics of heart in myocardial ischemia dogs. Chin J Basic Med Tradit Chin Med 2012;18:777-82.