DOI QR코드

DOI QR Code

Test of Independence Between Variables to Estimate the Frequency of Damage in Heat Pipe

열수송관 파손빈도 추정을 위한 변수간 독립성 검정

  • Myeongsik Kong (Department of Geotechinical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jaemo Kang (Department of Geotechinical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Sungyeol Lee (Department of Geotechinical Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • Received : 2023.11.16
  • Accepted : 2023.11.28
  • Published : 2023.12.01

Abstract

Heat pipes located underground in urban areas and operated under high temperature and pressure conditions can cause large-scale human and economic damage if damaged. In order to predict damage in advance, damage and construction information of heat pipe are analyzed to derive independent variables that have a correlation with frequency of damage, and a simple regression analysis modified model using each variable is applied to the field. However, as the correlation between independent variables applied to the model increases, the independence between variables is harmed and the reliability of the model decreases. In this study, the independence of the pipe diameter, burial depth, insulation level of monitoring system, and disconnection or short circuit of the detection line, which are judged to be interrelated, was tested to derive a method for combining variables and setting categories necessary to apply to the frequency of damage estimation model. For the test of independence, the continuous variables pipe diameter and burial depth were each converted into three categories, insulation level of monitoring system was converted into two categories, and the categorical variable disconnection or short circuit of the detection line status was kept as two categories. As a result of the test of independence, p-value between pipe diameter and burial depth, level of monitoring system and disconnection or short circuit of the detection line was lower than the significance level (α = 0.05), indicating a large correlation between them. Therefore, the pipe diameter and burial depth were combined into one variable, and the categories of the combined variable were set to 9 considering the previously set categories. The insulation level of monitoring system and the disconnection or short circuit of the detection line were also combined into one variable. Since the insulation level is unreliable when the detection line status is disconnection or short circuit, the categories of the combined variable were set to 3.

도심지 지하에 위치하며 고온, 고압조건에서 운영되는 열수송관은 파손 시 인적, 경제적으로 대규모 피해가 발생할 수 있다. 파손을 사전에 예측하기 위해 기존 파손이력과 설비이력을 분석하여 파손빈도와 상관관계를 가지는 독립변수를 도출하고, 각 변수를 활용한 단순회귀분석 변형모델이 현장에 적용되고 있다. 다만, 모델에 적용되는 독립변수간 상관관계가 클수록 변수간 독립성이 훼손되어 모델의 신뢰성이 낮아진다. 본 연구에서는 상호 연관성을 가지는 것으로 판단되는 관경, 매설깊이, 감시시스템 절연레벨, 감지선의 단선 또는 단락의 독립성을 검정하여 파손빈도 추정모델에 적용하기 위해 필요한 변수간 결합 및 범주 설정 방안을 도출하였다. 독립성 검정을 위해 연속형 변수인 관경과 매설깊이는 각각 3개의 범주, 감시시스템 절연레벨은 2개의 범주로 변환하였으며, 범주형 변수인 감시시스템 감지선 상태는 범주를 그대로 2개로 유지하였다. 독립성 검정 결과, 관경과 매설깊이간, 감시시스템 절연레벨과 감지선의 단선 또는 단락간 유의확률이 유의수준(α = 0.05)보다 작아 상호간 상관관계가 큰 것으로 나타났다. 따라서 관경과 매설깊이를 하나의 변수로 결합하고 사전에 설정한 범주를 고려하여 결합 변수의 범주는 9개로 설정하였다. 감시시스템 절연레벨과 감지선의 단선 또는 단락 역시 하나의 변수로 결합하였으며, 감지선 상태가 단선 또는 단락인 경우 절연레벨값을 신뢰할 수 없으므로 결합 변수의 범주는 3개로 설정하였다.

Keywords

Acknowledgement

본 연구는 (23주요-대1-임무)지하 공간 정보 정확도 개선 및 매설관 안전관리 기술개발(4/5) 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. 산업통상자원부 (2019), 집단에너지시설의 기술기준, 산업통상자원부고시 제2019-25호.
  2. 권혜림 (2018), '백석역 사고' 원인인 노후 배관, 전국 32%.성남.분당 77%, 중앙일보.
  3. 한국지역난방공사 (2022), 지사별 열수송관 구축, 보수 현황.
  4. 한국지역난방공사 (2017), 한국지역난방공사 열배관 설계 및 시공기준.
  5. Ingo Kropp (2017), KANEW 3S 6.3 Training, Report, 3S Consult GmbH, Dresden, pp. 1~54.
  6. Kerstin Sernhed and Mikael Jonsson (2016), Risk management for maintenance of district heating networks, The 15th International Symposium on District Heating and Cooling, Seoul, South Korea, pp. 381~393.
  7. Kim, J. Y. and Jeong J. C. (2019) Diagnosis Techniques for District Heating Pipelines and Future Direction of R&D, Winter Conference of Korea Society for Fluid Machinery, Jeju, South Korea, p. 60 (In Korean).
  8. Kong, M. S. and Kang, J. M. (2021), Methodology for estimating the probability of damage to a heat transmission pipe, Journal of the Korean Geo-Environmental Society, Vol. 22, No. 11, pp. 15~21 (In Korean).
  9. Kong, M. S. and Kwak P. J. (2021), Case of decision-making system establishment for heat transfer pipeline management, Special Feature, Korea Society of Civil Engineers, Vol. 69, No. 1, pp. 34~41 (In Korean).
  10. Lee, J. G., Cho, J. Y., Kim, M. W. and Kim, K. H. (2014), The Structural Analysis of Pipeline Acording to the Depth of Laying, Autumn Conference of Korea Concrete Institute 2014, Jeju, South Korea, pp. 97~98 (In Korean).
  11. Pawel Gilski, Ewa Krecielewska, Jean-Marc Lucatelli, Bertrand Bouttier and Yannick Gourbeyre (2015), Probability of Failure Assessment in District Heating Network, The 14th International Symposium on District Heating and Cooling, Power and Energy Engineering, Stockholm, Sweden, pp. 517~525.
  12. Sernhed, K., Ekdahl, E. and Skoglund, P. (2012), Statusbedomning av betongkulvertar (In English: Status assessments of concrete culverts). Fjarrsyn report, Vol. 9, p. 2012.
  13. Wojdyga, K. and Chorzelski, M. (2017), Chances for polish district heating systems, Energy Procedia, Vol. 116, pp. 106~118. https://doi.org/10.1016/j.egypro.2017.05.059