Acknowledgement
이 논문은 2022학년도 한남대학교 학술연구비 지원에 의하여 연구되었음.
References
- Liu, H., Zhang, L., Huang, J., Mao, J., Chen, Z., Mao, Q., Ge, M., and Lai, Y., 2022, "Smart surfaces with reversibly switchable wettability: Concepts, synthesis and applications," Advances in Colloid and Interface Science, 300, 102584.
- Kwon, J. S., 2019, "Opto-electrokinetic technique for microfluidic manipulation of microorganism," Journal of the Korean Society of Visualization, 17(1), 69-77. https://doi.org/10.5407/JKSV.2019.17.1.069
- Cui, H., Wang, W., Shi, L., Song, W., and Wang, S., 2020, "Superwettable surface engineering in controlling cell adhesion for emerging bioapplications," Small Methods, 4(12), 2000573.
- Yang, C., Zeng, Q., Huang, J., and Guo, Z., 2022, "Droplet manipulation on superhydrophobic surfaces based on external stimulation: A review," Advances in Colloid and Interface Science, 306, 102724.
- Su, X., Li, H., Lai, X., Zhang, L., Liao, X., Wang, J., Zeng, X., and Li, G., 2018, "Dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states for water droplet transportation and oil-water separation," ACS Applied Materials & Interfaces, 10(4), 4213-4221. https://doi.org/10.1021/acsami.7b15909
- Park, S. Y., and Chiou, P. Y., 2011, "Light-driven droplet manipulation technologies for lab-on-a-chip applications," Advances in OptoElectronics.
- Liu, Z., Yang, X., Pang, G., Zhang, F., Han, Y., Wang, X., Xue, L., and Wang, S., 2019, "Temperature-based adhesion tuning and superwettability switching on superhydrophobic aluminum surface for droplet manipulations," Surface and Coatings Technology, 375, 527-533. https://doi.org/10.1016/j.surfcoat.2019.07.041
- Ben, S., Zhou, T., Ma, H., Yao, J., Ning, Y., Tian, D., Jiang, L., and Zhang, D., 2019, "Multifunctional magnetocontrollable superwettable- microcilia surface for directional droplet manipulation," Advanced Science, 6(17), 1900834.
- Gupta, P., Vermani, K., and Garg, S., 2002, "Hydrogels: from controlled release to pH-responsive drug delivery," Drug Discovery Today, 7(10), 569-579. https://doi.org/10.1016/S1359-6446(02)02255-9
- Wang, L., Gao, C., Hou, Y., Zheng, Y., Jiang, L., and Li, X., 2016, "Magnetic field-guided directional rebound of a droplet on a superhydrophobic flexible needle surface," Journal of Materials Chemistry A, 4(47), 18289-18293. https://doi.org/10.1039/C6TA08333A
- Kim, J. H., Kang, S. M., Lee, B. J., Ko, H., Bae, W. G., Suh, K. Y., Jeong, H. E., and Yang, P., 2015, "Remote manipulation of droplets on a flexible magnetically responsive film," Scientific Reports, 5(1), 17843.
- Yang, C., Wu, L., Li, G., and Zhang, L., 2018, "Magnetically responsive superhydrophobic surface: in situ reversible switching of water droplet wettability and adhesion for droplet manipulation," ACS Applied Materials & Interfaces, 10(23), 20150-20158. https://doi.org/10.1021/acsami.8b04190
- Lai, Y., Gao, X., Zhuang, H., Huang, J., Lin, C., and Jiang, L., 2009, "Designing superhydrophobic porous nanostructures with tunable water adhesion," Advanced Materials, 21(37), 3799-3803. https://doi.org/10.1002/adma.200900686
- Ko, T. J., Her, E. K., Shin, B., Kim, H. Y., Lee, K. R., Hong, B. K., Moon, M. W., and Kim, D. S., 2012, "Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures," Carbon, 50(14), 5085-5092. https://doi.org/10.1016/j.carbon.2012.06.048
- Atthi, N., Dielen, M., Sripumkhai, W., Pattamang, P., Meananeatra, R., Saengdee, P., and Ter Meulen, J. M., 2021, "Fabrication of high aspect ratio micro-structures with superhydrophobic and oleophobic properties by using large-area roll-to-plate nanoimprint lithography," Nanomaterials, 11(2), 339.
- Chen, G., Dai, Z., Li, S., Huang, Y., Xu, Y., She, J., Zhou, B., and Zhou, B., 2021, "Magnetically responsive film decorated with microcilia for robust and controllable manipulation of droplets," ACS Applied Materials & Interfaces, 13(1), 1754-1765. https://doi.org/10.1021/acsami.0c16262
- Eddings, M. A., Johnson, M. A., and Gale, B. K., 2008, "Determining the optimal PDMS-PDMS bonding technique for microfluidic devices," Journal of Micromechanics and Microengineering, 18(6), 067001.
- Wang, Q., Sun, G., Tong, Q., Yang, W., and Hao, W., 2021, "Fluorine-free superhydrophobic coatings from polydimethylsiloxane for sustainable chemical engineering: Preparation methods and applications," Chemical Engineering Journal, 426, 130829.
- Jeong, H. E., Lee, S. H., Kim, P., Suh, Y. K., 2007, "Capillary-driven rigiflex lithography for fabricating high aspect-ratio polymer nanostructures," Journal of the Korean Society of Visualization, 5(1), 3-8. https://doi.org/10.5407/JKSV.2007.5.1.003
- Kim, H. W., and Park, J., 2020, "On-demand acoustofluidic droplet generation with tunable droplet volume," Journal of the Korean Society of Visualization, 18(2), 46-50
- Park, K., Park, J., Jung, J. H., Destgeer, G., Ahmed, H., Ahmad, R., and Sung, H. J., 2017, "In-droplet preconcentration of microparticles using surface acoustic wave," Journal of the Korean Society of Visualization, 15(1), 47-52. https://doi.org/10.5407/jksv.2017.15.1.047
- Jeong, E. H., Kim, I., Go, J. S., and Kim, K. C., 2006, "Fabrication of functional microcapsule for drug delivery by using droplet phase flow," Journal of the Korean Society of Visualization, 4(2), 6-10.