DOI QR코드

DOI QR Code

Regulation of CMGC kinases by hypoxia

  • KyeongJin Kim (Department of Biomedical Sciences, Program in Biomedical Science & Engineering and Research Center for Controlling Intercellular Communication (RCIC), Inha University College of Medicine) ;
  • Sang Bae Lee (Division of Life Sciences, Jeonbuk National University)
  • Received : 2023.08.20
  • Accepted : 2023.10.12
  • Published : 2023.11.30

Abstract

Hypoxia, a widespread occurrence observed in various malignant tumors, results from rapid tumor growth that outpaces the oxygen supply. Tumor hypoxia precipitates several effects on tumor biology; these include activating angiogenesis, intensifying invasiveness, enhancing the survival of tumor cells, suppressing anti-tumor immunity, and fostering resistance to therapy. Aligned with the findings that correlate CMGC kinases with the regulation of Hypoxia-Inducible Factor (HIF), a pivotal modulator, reports also indicate that hypoxia governs the activity of CMGC kinases, including DYRK1 kinases. Prolyl hydroxylation of DYRK1 kinases by PHD1 constitutes a novel mechanism of kinase maturation and activation. This modification "primes" DYRK1 kinases for subsequent tyrosine autophosphorylation, a vital step in their activation cascade. This mechanism adds a layer of intricacy to comprehending the regulation of CMGC kinases, and underscores the complex interplay between distinct post-translational modifications in harmonizing precise kinase activity. Overall, hypoxia assumes a substantial role in cancer progression, influencing diverse aspects of tumor biology that include angiogenesis, invasiveness, cell survival, and resistance to treatment. CMGC kinases are deeply entwined in its regulation. To fathom the molecular mechanisms underpinning hypoxia's impact on cancer cells, comprehending how hypoxia and prolyl hydroxylation govern the activity of CMGC kinases, including DYRK1 kinases, becomes imperative. This insight may pave the way for pioneering therapeutic approaches that target the hypoxic tumor microenvironment and its associated challenges.

Keywords

Acknowledgement

This work was supported by an INHA UNIVERSITY Research Grant to K.K., and National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) to K.K. (RS-2023-00208008 and 2021R1A5A2031612), and S.B.L. (2020R1C1C1014281 and 2021R1A5A8029876).

References

  1. Druker J, Wilson JW, Child F, Shakir D, Fasanya T and Rocha S (2021) Role of hypoxia in the control of the cell cycle. Int J Mol Sci 22, 4874
  2. Wicks EE and Semenza GL (2022) Hypoxia-inducible factors: cancer progression and clinical translation. J Clin Invest 132, e159839
  3. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148, 399-408 https://doi.org/10.1016/j.cell.2012.01.021
  4. Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14, 1983-1991 https://doi.org/10.1101/gad.14.16.1983
  5. Simon MC and Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9, 285-296 https://doi.org/10.1038/nrm2354
  6. Semenza GL (2001) HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13, 167-171 https://doi.org/10.1016/S0955-0674(00)00194-0
  7. Wang GL, Jiang BH, Rue EA and Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92, 5510-5514 https://doi.org/10.1073/pnas.92.12.5510
  8. Semenza GL (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107, 1-3 https://doi.org/10.1016/S0092-8674(01)00518-9
  9. Sutter CH, Laughner E and Semenza GL (2000) Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci U S A 97, 4748-4753 https://doi.org/10.1073/pnas.080072497
  10. Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275 https://doi.org/10.1038/20459
  11. Hubbi ME, Gilkes DM, Hu H, Kshitiz, Ahmed I and Semenza GL (2014) Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1alpha to promote cell-cycle progression. Proc Natl Acad Sci U S A 111, E3325-E3334
  12. Lee SB, Frattini V, Bansal M et al (2016) An ID2-dependent mechanism for VHL inactivation in cancer. Nature 529, 172-177 https://doi.org/10.1038/nature16475
  13. Lee SB, Ko A, Oh YT et al (2020) Proline hydroxylation primes protein kinases for autophosphorylation and activation. Mol Cell 79, 376-389 e378
  14. Manning G, Whyte DB, Martinez R, Hunter T and Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298, 1912-1934 https://doi.org/10.1126/science.1075762
  15. Aranda S, Laguna A and de la Luna S (2011) DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 25, 449-462 https://doi.org/10.1096/fj.10-165837
  16. Lasorella A, Benezra R and Iavarone A (2014) The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 14, 77-91 https://doi.org/10.1038/nrc3638
  17. Gorres KL and Raines RT (2010) Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 45, 106-124 https://doi.org/10.3109/10409231003627991
  18. Kaelin WG, Jr. and Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30, 393-402 https://doi.org/10.1016/j.molcel.2008.04.009
  19. Strowitzki MJ, Cummins EP and Taylor CT (2019) Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: unique or ubiquitous? Cells 8, 384
  20. Fong GH and Takeda K (2008) Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ 15, 635-641 https://doi.org/10.1038/cdd.2008.10
  21. Zhong H, Hanrahan C, van der Poel H and Simons JW (2001) Hypoxia-inducible factor 1alpha and 1beta proteins share common signaling pathways in human prostate cancer cells. Biochem Biophys Res Commun 284, 352-356 https://doi.org/10.1006/bbrc.2001.4981
  22. Reyes H, Reisz-Porszasz S and Hankinson O (1992) Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science 256, 1193-1195 https://doi.org/10.1126/science.256.5060.1193
  23. Jiang BH, Rue E, Wang GL, Roe R and Semenza GL (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271, 17771-17778 https://doi.org/10.1074/jbc.271.30.17771
  24. Varjosalo M, Keskitalo S, Van Drogen A et al (2013) The protein interaction landscape of the human CMGC kinase group. Cell Rep 3, 1306-1320 https://doi.org/10.1016/j.celrep.2013.03.027
  25. Chowdhury I, Dashi G and Keskitalo S (2023) CMGC kinases in health and cancer. Cancers (Basel) 15, 3838
  26. Gould CM, Kannan N, Taylor SS and Newton AC (2009) The chaperones Hsp90 and Cdc37 mediate the maturation and stabilization of protein kinase C through a conserved PXXP motif in the C-terminal tail. J Biol Chem 284, 4921-4935 https://doi.org/10.1074/jbc.M808436200
  27. Lochhead PA (2009) Protein kinase activation loop auto-phosphorylation in cis: overcoming a Catch-22 situation. Sci Signal 2, pe4
  28. van der Laden J, Soppa U and Becker W (2015) Effect of tyrosine autophosphorylation on catalytic activity and subcellular localisation of homeodomain-interacting protein kinases (HIPK). Cell Commun Signal 13, 3
  29. Asghar U, Witkiewicz AK, Turner NC and Knudsen ES (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 14, 130-146 https://doi.org/10.1038/nrd4504
  30. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15, 122
  31. Lukasik P, Zaluski M and Gutowska I (2021) Cyclin-dependent kinases (CDK) and their role in diseases development-review. Int J Mol Sci 22, 2935
  32. Ghafouri-Fard S, Khoshbakht T, Hussen BM et al (2022) A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 22, 325
  33. Kannan N and Neuwald AF (2004) Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha. Protein Sci 13, 2059-2077 https://doi.org/10.1110/ps.04637904
  34. Lim S and Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140, 3079-3093 https://doi.org/10.1242/dev.091744
  35. Ding L, Cao J, Lin W et al (2020) The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci 21, 1960
  36. Garcia-Reyes B, Kretz AL, Ruff JP et al (2018) The emerging role of cyclin-dependent kinases (CDKs) in pancreatic ductal adenocarcinoma. Int J Mol Sci 19, 3219
  37. Otto T and Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17, 93-115 https://doi.org/10.1038/nrc.2016.138
  38. Braicu C, Buse M, Busuioc C et al (2019) A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers (Basel) 11, 1618
  39. Johnson GL and Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912 https://doi.org/10.1126/science.1072682
  40. Cargnello M and Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75, 50-83 https://doi.org/10.1128/MMBR.00031-10
  41. Burotto M, Chiou VL, Lee JM and Kohn EC (2014) The MAPK pathway across different malignancies: a new perspective. Cancer 120, 3446-3456 https://doi.org/10.1002/cncr.28864
  42. Murphy LO, Smith S, Chen RH, Fingar DC and Blenis J (2002) Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 4, 556-564 https://doi.org/10.1038/ncb822
  43. Fojtik P, Beckerova D, Holomkova K, Senfluk M and Rotrekl V (2020) Both hypoxia-inducible factor 1 and MAPK signaling pathway attenuate PI3K/AKT via suppression of reactive oxygen species in human pluripotent stem cells. Front Cell Dev Biol 8, 607444
  44. Lee KH, Choi EY, Hyun MS and Kim JR (2004) Involvement of MAPK pathway in hypoxia-induced up-regulation of urokinase plasminogen activator receptor in a human prostatic cancer cell line, PC3MLN4. Exp Mol Med 36, 57-64 https://doi.org/10.1038/emm.2004.8
  45. Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V and Caro J (2003) MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem 278, 14013-14019 https://doi.org/10.1074/jbc.M209702200
  46. Ren H, Accili D and Duan C (2010) Hypoxia converts the myogenic action of insulin-like growth factors into mitogenic action by differentially regulating multiple signaling pathways. Proc Natl Acad Sci U S A 107, 5857-5862 https://doi.org/10.1073/pnas.0909570107
  47. Wang Y, Huang Y, Guan F et al (2013) Hypoxia-inducible factor-1alpha and MAPK co-regulate activation of hepatic stellate cells upon hypoxia stimulation. PLoS One 8, e74051
  48. Park EC and Rongo C (2016) The p38 MAP kinase pathway modulates the hypoxia response and glutamate receptor trafficking in aging neurons. Elife 5, e12010
  49. Flugel D, Gorlach A, Michiels C and Kietzmann T (2007) Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol 27, 3253-3265 https://doi.org/10.1128/MCB.00015-07
  50. Song M, Pang L, Zhang M, Qu Y, Laster KV and Dong Z (2023) Cdc2-like kinases: structure, biological function, and therapeutic targets for diseases. Signal Transduct Target Ther 8, 148
  51. Bowler E, Porazinski S, Uzor S et al (2018) Hypoxia leads to significant changes in alternative splicing and elevated expression of CLK splice factor kinases in PC3 prostate cancer cells. BMC Cancer 18, 355
  52. Becker W (2012) Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control. Cell Cycle 11, 3389-3394 https://doi.org/10.4161/cc.21404
  53. Hammerle B, Ulin E, Guimera J, Becker W, Guillemot F and Tejedor FJ (2011) Transient expression of Mnb/Dyrk1a couples cell cycle exit and differentiation of neuronal precursors by inducing p27KIP1 expression and suppressing NOTCH signaling. Development 138, 2543-2554 https://doi.org/10.1242/dev.066167
  54. Litovchick L, Florens LA, Swanson SK, Washburn MP and DeCaprio JA (2011) DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly. Genes Dev 25, 801-813 https://doi.org/10.1101/gad.2034211
  55. Park J, Oh Y, Yoo L et al (2010) Dyrk1A phosphorylates p53 and inhibits proliferation of embryonic neuronal cells. J Biol Chem 285, 31895-31906 https://doi.org/10.1074/jbc.M110.147520
  56. Yabut O, Domogauer J and D'Arcangelo G (2010) Dyrk1A overexpression inhibits proliferation and induces premature neuronal differentiation of neural progenitor cells. J Neurosci 30, 4004-4014 https://doi.org/10.1523/JNEUROSCI.4711-09.2010
  57. Dowjat WK, Adayev T, Kuchna I et al (2007) Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci Lett 413, 77-81 https://doi.org/10.1016/j.neulet.2006.11.026
  58. Soundararajan M, Roos AK, Savitsky P et al (2013) Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure 21, 986-996 https://doi.org/10.1016/j.str.2013.03.012
  59. Himpel S, Panzer P, Eirmbter K et al (2001) Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. Biochem J 359, 497-505 https://doi.org/10.1042/bj3590497
  60. Becker W and Joost HG (1999) Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Prog Nucleic Acid Res Mol Biol 62, 1-17
  61. Mercer SE and Friedman E (2006) Mirk/Dyrk1B: a multifunctional dual-specificity kinase involved in growth arrest, differentiation, and cell survival. Cell Biochem Biophys 45, 303-315 https://doi.org/10.1385/CBB:45:3:303
  62. Cockman ME, Lippl K, Tian YM et al (2019) Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. Elife 8, e46490
  63. Epstein AC, Gleadle JM, McNeill LA et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43-54 https://doi.org/10.1016/S0092-8674(01)00507-4
  64. Zhang H, Wu W, Du Y et al (2004) Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling. J Biol Chem 279, 19457-19463 https://doi.org/10.1074/jbc.M311377200
  65. Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN and Cochran BH (1999) p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 19, 1661-1672 https://doi.org/10.1128/MCB.19.3.1661
  66. Papenfuss M, Lutzow S, Wilms G et al (2022) Differential maturation and chaperone dependence of the paralogous protein kinases DYRK1A and DYRK1B. Sci Rep 12, 2393
  67. Walte A, Ruben K, Birner-Gruenberger R et al (2013) Mechanism of dual specificity kinase activity of DYRK1A. FEBS J 280, 4495-4511 https://doi.org/10.1111/febs.12411
  68. Lochhead PA, Sibbet G, Morrice N and Cleghon V (2005) Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs. Cell 121, 925-936 https://doi.org/10.1016/j.cell.2005.03.034
  69. Wang L, Zhang Q and You Q (2022) Targeting the HSP90-CDC37-kinase chaperone cycle: a promising therapeutic strategy for cancer. Med Res Rev 42, 156-182 https://doi.org/10.1002/med.21807
  70. Wang L, Li L, Gu K, Xu XL, Sun Y and You QD (2017) Targeting Hsp90-Cdc37: a promising therapeutic strategy by inhibiting Hsp90 chaperone function. Curr Drug Targets 18, 1572-1585 https://doi.org/10.2174/1389450117666160527125522