DOI QR코드

DOI QR Code

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu (College of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Jun-Yan Wang (Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education) ;
  • Yi Tao (College of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Qing-Xuan Shi (College of Civil Engineering, Xi'an University of Architecture and Technology)
  • Received : 2023.04.25
  • Accepted : 2023.10.31
  • Published : 2023.11.25

Abstract

This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support provided by the Major Project of Science and Technology of Ningbo (Grant No. 2020Z034), the National Natural Science Foundation of China (Grant No. 52278271; Grant No. 51978567).

References

  1. Brux, U., Frommeyer, G., Grassel, O., Meyer, L.W. and Weise, A. (2002), "Development and characterization of high strength impact resistant Fe-Mn-(Al-, Si) TRIP/TWIP steels", Steel Res. Int., 73(6-7), 294-298. https://doi.org/10.1002/srin.200200211.
  2. Chen, S.M., Zhang, R., Jia, L.J. and Wang, J.Y. (2018), "Flexural behaviour of rebar-reinforced ultra high performance concrete beams", Mag. Concrete Res., 70(19), 997-1015. https://doi.org/10.1680/jmacr.17.00283.
  3. Cheng, Z., Zhang, Q., Bao, Y., Deng, P. and Li, M. (2021), "Flexural behavior of corrugated steel-UHPC composite bridge decks", Eng. Struct., 246(3), 113066. https://doi.org/10.1016/j.engstruct.2021.113066.
  4. Dai, X.H., Yang, J., Zhou, K., Sheehan, T. and Lam, D. (2023), "Numerical study of steel-concrete composite cellular beam using demountable shear connectors", Structures, 51, 1328-1340. https://doi.org/ 10.1016/j.istruc.2023.03.134.
  5. Dixit, A., Du, H.J. and Pang, S.D. (2021), "Carbon capture in ultra-high performance concrete using pressurized CO2 curing", Constr. Build. Mater., 288, 123076. https://doi.org/10.1016/j.conbuildmat.2021.123076.
  6. Fahmy, A.S., Swelem, S.M. and Abdelaziz, M.K. (2023), "Behavior of high-strength demountable bolted shear connectors in steel-concrete girders with prefabricated slabs", Alex. Eng. J., 70, 247-260. https://doi.org/10.1016/j.aej.2023.02.041.
  7. Gao, X.L., Wang, J.Y., Bian, C., Xiao, R.C. and Ma, B. (2022b), "Experimental investigation on the behaviour of UHPC-steel composite slabs under hogging moment", Steel Compos. Struct., 42(6), 765-777. https://doi.org/10.12989/scs.2022.42.6.765.
  8. Gao, Y.M., Fan, L., Yang, W.P., Shi, L., Zhou, D. and Wang, M. (2022a), "Mechanical behavior of prefabricated steel-concrete composite beams considering the clustering degree of studs", Steel Compos. Struct., 45(3), 425-436. https://doi.org/10.12989/scs.2022.45.3.425.
  9. GB-T 228.1-2010 (2010), Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature, China Quality and Standards Publishing and Media Press, Beijing, 2010. (In Chinese)
  10. GB 50010-2010 (2010), Code for Design of Concrete Structures. China Architecture & Building Press, Beijing, 2010. (In Chinese)
  11. Gu, J.B. and Wang, J.Y. (2022), "Shear behavior of a demountable bolted connector in steel-UHPC lightweight composite structures", Struct. Eng. Mech., 81(5), 551-563. https://doi.org/10.12989/sem.2022.81.5.551.
  12. Gu, J.B., Wang, J.Y. and Lu, W. (2022), "An experimental assessment of ultra high performance concrete beam reinforced with negative Poisson's ratio (NPR) steel rebar", Constr. Build. Mater., 327, 127042. https://doi.org/10.1016/j.conbuildmat.2022.127042.
  13. Gu, T., Jia, L.J., Chen, B., Xia, M., Guo, H. and He, M.C. (2021), "Unified full-range plasticity till fracture of meta steel and structural steels", Eng. Fract. Mech., 253(10), 107869. https://doi.org/10.1016/j.engfracmech.2021.107869.
  14. Guo, J.Y., Wang, J.Y. and Wu, K. (2019), "Effects of self-healing on tensile behavior and air permeability of high strain hardening UHPC", Constr Build Mater., 204, 342-356. https://doi.org/10.1016/j.conbuildmat.2019.01.193.
  15. Guo, J.Y., Wang, J.Y., Wang, Y.B., Gao, X.L. and Bian, C. (2022), "Experimental study on demountable steel ultra-high performance concrete composite slabs under hogging moment", Arch. Civ. Mech. Eng., 22(3), 1-24. https://doi.org/10.1007/s43452-022-00458-w.
  16. He, J., Suwaed, A.S.H., Vasdravellis, G. and Wang, S.H. (2022), "Standard Pushout Tests and Design Rules for a Bolted-Welded Hybrid Demountable Shear Connector", J. Struct. Eng., 148(8), 04022097. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003404.
  17. Hung, C.C., Chen, Y.T. and Yen, C.H. (2020), "Workability, fiber distribution, and mechanical properties of UHPC with hooked end steel macro-fibers", Constr. Build. Mater., 260(5), 119944. https://doi.org/10.1016/j.conbuildmat.2020.119944.
  18. Jung, D.S., Park, S.H., Kim, T.H., Han, J.W. and Kim, C.Y. (2022), "Demountable bolted shear connector for easy deconstruction and reconstruction of concrete slabs in steel-concrete bridges", Appl. Sci-Basel, 12(3), 1508. https://doi.org/10.3390/app12031508.
  19. Kavoura, F., Christoforidou, A., Pavlovic, M. and Veljkovic, M. (2022), "Mechanical properties of demountable shear connectors under different confined conditions for reusable hybrid decks", Steel Compos. Struct., 43(4), 419-429. https://doi.org/10.12989/scs.2022.43.4.419.
  20. Kwon, G., Engelhardt, M.D. and Klingne, R.E. (2011), "Experimental behavior of bridge beams retrofitted with postinstalled shear connectors", J. Bridge Eng., 16(4), 536-545. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000184.
  21. Luo, Y.B., Sun, S.K., Yan, J.B., Zhao, Y.C. and Lam, D. (2022), "Shear behavior of novel demountable bolted shear connector for prefabricated composite beam", Adv. Steel Constr., 18(4), 745-752. https://doi.org/10.18057/IJASC.2022.18.4.2.
  22. M.C.S.-E.P.F.L.(2016), Lausanne, Recommendation: Ultra-High Performance Fibre Reinforced Cement-based composites (UHPFRC) Construction Material, Dimensioning und Application, Zurich, Switzerland.
  23. Moon, J., Youm, K.S., Lee, J.S. and Yun, T.S. (2022), "Flowability and mechanical characteristics of self-consolidating steel fiber reinforced ultra-high performance concrete", Steel Compos. Struct., 43(3), 389-401. https://doi.org/10.12989/scs.2022.43.3.389.
  24. Oelhers, D.J., Nguyen, N.T., Ahmed, M. and Bradford, M.A. (1997), "Partial interaction in composite steel and concrete beams with full shear connection", J. Constr. Steel Res., 41(2/3), 235-248. https://doi.org/10.1016/S0143-974X(97)80892-9.
  25. Park, Y.H., Kim, S.H., Lee, S.Y. and Choi, J.H. (2013), "Approximate analysis method for composite beam with partial interaction using Fourier series", Int. J. Steel Struct., 13(2), 219-227. https://doi.org/10.1007/s13296-013-2002-9.
  26. Shao, X.D., Qu, W., Cao, J.H. and Yao Y. (2018), "Static and fatigue properties of the steel-UHPC lightweight composite bridge deck with large U ribs", J. Constr. Steel Res., 148, 491-507. https://doi.org/10.1016/j.jcsr.2018.05.011.
  27. Shao, X.D., Yi, D., Huang, Z., Zhao, H., Chen, B. and Liu, M. (2013), "Basic performance of the composite bridge deck system composed of orthotropic steel deck and ultrathin RPC layer", J. Bridge Eng., 18(5), 417-428. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000348.
  28. Wang, B., Wu, M.Z., Shi, Q.X. and Cai, W.Z. (2022), "Seismic performance of flanged RC walls under biaxial cyclic loading", J. Build. Eng., 64, 105632.
  29. Wang, J.Y. and Guo, J.Y. (2018), "Damage investigation of ultra high performance concrete under direct tensile test using acoustic emission techniques", Cem. Concr. Compos., 88, 17-28. https://doi.org/10.1016/j.cemconcomp.2018.01.007.
  30. Wang, Z., Nie, X., Fan, J.S., Lu, X.Y. and Ding, R. (2019), "Experimental and numerical investigation of the interfacial properties of non-steam-cured UHPC-steel composite beams", Constr. Build. Mater., 195, 323-339. https://doi.org/10.1016/j.conbuildmat.2018.11.057.
  31. Wei, Y., Li, Z.M., Wei, S., Xie, B.H. and Yang, M.B. (2004), "Review on auxetic materials", J. Mater. Sci., 39(10), 3269-3279. https://doi.org/10.1023/B:JMSC.0000026928.93231.e0
  32. Xue, J., Briseghella, B., Huang, F., Nuti, C., Tabatabai, H. and Chen, B. (2020), "Review of ultrahigh performance concrete and its application in bridge engineering", Constr. Build. Mater., 260, 119844. https://doi.org/10.1016/j.conbuildmat.2020.119844.
  33. Yoo, D.Y., Banthia, N., Kang, S.T. and Yoon, Y.S. (2016), "Effect of fiber orientation on the rate-dependent flexural behavior of ultra-high-performance fiber-reinforced concrete", Compos. Struct., 157 (dec.), 62-70. https://doi.org/10.1016/j.compstruct.2016.08.023.
  34. Yoo, S.W., Choi, Y.C., Choi, J.H. and Choo, J.F. (2021), "Nonlinear flexural analysis of composite beam with Inverted-T steel girder and UHPC slab considering partial interaction", J. Build. Eng., 34, 101887. https://doi.org/10.1016/j.jobe.2020.101887.
  35. Zhu, J., Ding, J. and Wang, Y. (2022), "Numerical and theoretical studies on shear behavior of steel-UHPC composite beams with waffle slab", J. Build. Eng., 47, 103913. https://doi.org/10.1016/j.jobe.2021.103913.
  36. Zou, Y., Zheng, K., Zhou, Z., Zhang, Z., Guo, J. and Jiang, J. (2023), "Experimental study on flexural behavior of hollow steel-UHPC composite bridge deck", Eng. Struct., 274, 115087. https://doi.org/10.1016/j.engstruct.2022.115087.