DOI QR코드

DOI QR Code

Patch loading resistance prediction of plate girders with multiple longitudinal stiffeners using machine learning

  • Carlos Graciano (Departamento de Ingenieria Civil, Universidad Nacional de Colombia, Facultad de Minas, Sede Medellin) ;
  • Ahmet Emin Kurtoglu (Department of Civil Engineering, Igdir University, Sehit Bulent Yurtseven Campus) ;
  • Balazs Kovesdi (Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Structural Engineering) ;
  • Euro Casanova (Universidad del Bio-Bio, Departamento Ingenieria Civil y Ambiental)
  • Received : 2023.06.04
  • Accepted : 2023.11.07
  • Published : 2023.11.25

Abstract

This paper is aimed at investigating the effect of multiple longitudinal stiffeners on the patch loading resistance of slender steel plate girders. Firstly, a numerical study is conducted through geometrically and materially nonlinear analysis with imperfections included (GMNIA), the model is validated with experimental results taken from the literature. The structural responses of girders with multiple longitudinal stiffeners are compared to the one of girders with a single longitudinal stiffener. Thereafter, a patch loading resistance model is developed through machine learning (ML) using symbolic regression (SR). An extensive numerical dataset covering a wide range of bridge girder geometries is employed to fit the resistance model using SR. Finally, the performance of the SR prediction model is evaluated by comparison of the resistances predicted using available formulae from the literature.

Keywords

References

  1. AASHTO (2015), American Association of State Highway and Transportation Officials - AASHTO LRFD Bridge Design Specifications, Washington DC.
  2. ANSYS (2018), Ansys Release 19 Elements Reference.
  3. Benedetti, A. and Dall'Aglio, F. (2012), "Patch loading of longitudinally stiffened webs". Bridge Maintenance, Safety, Management, Resilience and Sustainability", Proceedings of the Sixth International Conference on Bridge Maintenance, Safety and Management, 1039-1046.
  4. Ceranic, A., Bendic, M., Kovacevic, S., Salatic, R. and Markovic, N. (2022), "Influence of patch load length on strengthening effect in steel plate girders", J. Constr. Steel Res., 195, 107348. https://doi.org/10.1016/j.jcsr.2022.107348.
  5. Cevik, A. (2007), "A new formulation for longitudinally stiffened webs subjected to patch loading", J. Constr. Steel Res., 63(10), 1328-1340. https://doi.org/10.1016/j.jcsr.2006.12.004.
  6. Cevik, A., Kurtoglu, A.E., Bilgehan, M., Gulsan, M.E. and Albegmprli, H.M. (2015), "Support vector machines in structural engineering: A Review", J. Civ. Eng. Manag., 21(3), 261-281. https://doi.org/10.3846/13923730.2015.1005021.
  7. Cevik, A., Gogus, M.T., Guzelbey, I.H. and Filiz, H. (2010), "A new formulation for longitudinally stiffened webs subjected to patch loading using stepwise regression method", Adv. Eng. Software, 41(4), 611-618. https://doi.org/10.1016/j.advengsoft.2009.12.001.
  8. Chacon, R., Mirambell, E. and Real, E. (2019), "Transversally and longitudinally stiffened steel plate girders subjected to patch loading", Thin-Walled Struct., 138, 361-372. https://doi.org/10.1016/j.tws.2019.02.009.
  9. Cui, Y., Zhang, M. and Tang, Q. (2020), "Symbolic regression for formulation of shear resistance of bearing-type bolted connections", In proceedings of 17th World Conference on Earthquake Engineering, 17WCEE, September, 13-18, Sendai, Japan.
  10. Dall'Aglio, F. (2011), "Resistenza di travi metalliche a doppio T con irrigidimenti longitudinali soggette a carichi trasversali concentrati", Doctoral dissertation. Universita Degli Studi di Bologna, Dipartimento di Ingegneria Civile, Ambientale e dei Materiali, Bologna; Italy [In Italian]. http://amsdottorato.unibo.it/id/eprint/3952.
  11. Davaine, L. (2005), "Formulation de la resistance au lancement d'une ame metallique de pont raidie longitudinalement", Doctoral Thesis, D05-05, INSA de Rennes, France. [In French].
  12. Demari, F.E., Mezzomo, G.P. and Pravia, Z.M.C. (2020), "Numerical study of slender I-girders with one longitudinal stiffener under patch loading", J. Constr. Steel Res., 167, 105964. https://doi.org/10.1016/j.jcsr.2020.105964.
  13. Eurocode 3 (2006), Design of Steel Structures - Part 1-5: Plated structural elements. EN 1993-1-5: 2006.
  14. GPlearn (2023), Genetic Programming in Phyton with a scikit-learn inspired API, . Accesed in February 2023.
  15. Graciano, C. and Edlund, B. (2003), "Failure mechanism of slender girder webs with a longitudinal stiffener under patch loading", J. Constr. Steel Res., 59(1), 27-45. https://doi.org/10.1016/S0143-974X(02)00022-6.
  16. Graciano, C. (2015), "Patch loading resistance of longitudinally stiffened girders-A systematic review", Thin-Walled Struct., 95, 1-6. https://doi.org/10.1016/j.tws.2015.06.007.
  17. Graciano, C. and Zapata-Medina, D. (2015), "Effect of longitudinal stiffening on bridge girder webs at incremental launching stage", Ing. Investig., 35(1), 24-30. https://doi.org/10.15446/ing.investig.v35n1.42220.
  18. Graciano, C., Kurtoglu, A.E. and Casanova, E. (2021), "Machine learning approach for predicting the patch load resistance of slender austenitic stainless steel girders", Structures, 30, 198-205. https://doi.org/10.1016/j.istruc.2021.01.012.
  19. Hajdin, N. and Markovic, N. (2012), "Failure mechanism for longitudinally stiffened I girders subjected to patch loading", Arch. Appl. Mech., 82(10), 1377-1391. https://doi.org/10.1007/s00419-012-0679-4.
  20. Kovacevic, S., Markovic, N., Sumarac, D. and Salatic, R. (2019), "Influence of patch load length on plate girders. Part II: Numerical research", J. Constr. Steel Res., 158, 213-229. https://doi.org/10.1016/j.jcsr.2019.03.025.
  21. Kovacevic, S. and Markovic, N. (2020), "Experimental study on the influence of patch load length on steel plate girders", Thin-Wall. Struct., 151, 106733. https://doi.org/10.1016/j.tws.2020.106733.
  22. Kovacevic, S., Markovic, N., Sumarac, D. and Salatic, R. (2021), "Unfavorable geometric imperfections in steel plate girders subjected to localized loads", Thin-Wall. Struct., 161, 107412. https://doi.org/10.1016/j.tws.2020.107412.
  23. Kovesdi, B., Mecseri, B.J. and Dunai, L. (2018), "Imperfection analysis on the patch loading resistance of girders with open section longitudinal stiffeners", Thin-Wall. Struct., 123, 195-205. https://doi.org/10.1016/j.tws.2017.11.030.
  24. Kovesdi, B. (2018), "Patch loading resistance of slender plate girders with longitudinal stiffeners", J. Constr. Steel Res., 140, 237-246. https://doi.org/10.1016/j.jcsr.2017.10.031.
  25. Kovesdi, B. and Dunai, L. (2022), "Patch loading resistance of slender plate girders with multiple longitudinal stiffeners", ce/papers, 5(4), 615-622. https://doi.org/10.1002/cepa.1798.
  26. Kurtoglu, A.E. (2019), "Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines", Steel Compos. Struct.; 29(3), 309-318. https://doi.org/10.12989/scs.2018.29.3.309.
  27. Kurtoglu, A.E., Casanova, E. and Graciano, C. (2022), "Artificial intelligence-based modeling of extruded aluminum beams subjected to patch loading", Thin-Wall. Struct., 179, 109673. https://doi.org/10.1016/j.tws.2022.109673.
  28. Loaiza, N., Graciano, C., Chacon, R. and Casanova, E. (2017a), Influence of bearing length on the patch loading resistance of multiple longitudinally stiffened webs", ce/papers, 1(2-3), 4199-4204. https://doi.org/10.1002/cepa.477.
  29. Loaiza, N., Graciano, C., Chacon, R. and Casanova, E. (2017b), "A comparative analysis of longitudinal stiffener cross-section for slender I-girders subjected to patch loading", ce/papers, 1(2-3), 4223-4229. https://doi.org/10.1002/cepa.480.
  30. Loaiza, N., Graciano, C. and Casanova, E. (2018), "Design recommendations for patch loading resistance of longitudinally stiffened I-girders", Eng. Struct., 171, 747-758. https://doi.org/10.1016/j.engstruct.2018.06.019.
  31. Loaiza, N., Graciano, C. and Casanova, E. (2019a), "Web slenderness for longitudinally stiffened I-girders subjected to patch loading", J Constr. Steel Res., 162, 105737. https://doi.org/10.1016/j.jcsr.2019.105737.
  32. Loaiza, N. (2019b), Effect of longitudinal stiffening on the ultimate resistance of plate girders subjected to patch loading. Doctoral dissertation, Departamento de Ingenieria Civil, Universidad Nacional de Colombia, Medellin, Colombia. https://repositorio.unal.edu.co/handle/unal/76326.
  33. Markovic, N. and Kovacevic, S. (2019), "Influence of patch load length on plate girders. Part I: Experimental research", J. Constr. Steel Res., 157, 207-228. https://doi.org/10.1016/j.jcsr.2019.02.035.
  34. Salehi, H., Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.
  35. Shimizu, S. and Yoshida, S. and Okuhara, H. (1987), "An experimental study on patch loaded web plates", In Proceedings of ECCS Colloq Stab Plate Shell Struct, 85-94.
  36. Schmidt, M.D. and Lipson, H. (2005), "Coevolution of fitness maximizers and fitness predictors", In Proceedings of the Genetic and Evolutionary Computation Conference GECCO, Late Breaking Paper, Washington DC.
  37. Schmidt, M.D. and Lipson, H. (2007), "Learning noise", In Proceedings of the 9th Annual Conf. on Genetic and Evolutionary Computation, London, UK 1680-1685.
  38. Schmidt, M.D. and Lipson, H. (2008), "Coevolution of fitness predictors", IEEE Trans. Evol. Comput., 12(6), 736-749. https://doi.org/10.1109/TEVC.2008.919006.
  39. Sun, H., Burton, H.V. and Huang, H. (2021), "Machine learning applications for building structural design and performance assessment: State-of-the-art review", J. Build. Eng., 33, 101816. https://doi.org/10.1016/j.jobe.2020.101816.
  40. Tapeh, A.T.G. and Naser, M.Z. (2023), "Artificial intelligence, machine learning, and deep learning in structural engineering: A scientometrics review of trends and best practices", Arch. Computat. Methods Eng., 30, 115-159. https://doi.org/10.1007/s11831-022-09793-w.
  41. Thai, H.T. (2022), "Machine learning for structural engineering: A state-of-the-art review", Structures, 38, 448-491. https://doi.org/10.1016/j.istruc.2022.02.003.
  42. Tran, V.L. and Nguyen, D.D. (2022), "Novel hybrid WOA-GBM model for patch loading resistance prediction of longitudinally stiffened steel plate girders", Thin-Walled Struct., 177, 109424. https://doi.org/10.1016/j.tws.2022.109424.
  43. Truong, V.H., Papazafeiropoulos, G., Pham, V.T. and Vu, Q.V. (2019). "Effect of multiple longitudinal stiffeners on ultimate strength of steel plate girders", Structures, 22, 366-382. https://doi.org/10.1016/j.istruc.2019.09.002.
  44. Truong, V.H., Papazafeiropoulos, G., Vu, Q.V., Pham, V.T. and Kong, Z. (2021), "Predicting the patch load resistance of stiffened plate girders using machine learning algorithms", Ocean Eng., 240, 109886. https://doi.org/10.1016/j.oceaneng.2021.109886.
  45. Vigh, L.G. and Dunai, L. (2010), "Advanced stability analysis of regular stiffened plates and complex plated elements", International Colloquium on Stability and Ductility of Steel Structures SDSS' Rio. 81-100.
  46. Vu, Q., Papazafeiropoulos, G., Graciano, C. and Kim, S. (2019a), "Optimum linear buckling analysis of longitudinally multi-stiffened steel plates subjected to combined bending and shear", Thin Wall. Struct., 136, 235-245. https://doi.org/10.1016/j.tws.2018.12.008.
  47. Vu, Q., Truong, V., Papazafeiropoulos, G., Graciano, C. and Kim, S. (2019b), "Bending-buckling strength of steel plates with multiple longitudinal stiffeners", J. Constr. Steel Res., 158, 41-52. https://doi.org/10.1016/j.jcsr.2019.03.006.