DOI QR코드

DOI QR Code

The Relationship between the Sugar Preference of Bacterial Pathogens and Virulence on Plants

  • Ismaila Yakubu (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Hyun Gi Kong (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University)
  • 투고 : 2023.06.08
  • 심사 : 2023.09.19
  • 발행 : 2023.12.01

초록

Plant pathogenic bacteria colonize plant surfaces and inner tissues to acquire essential nutrients. Nonstructural sugars hold paramount significance among these nutrients, as they serve as pivotal carbon sources for bacterial sustenance. They obtain sugar from their host by diverting nonstructural carbohydrates en route to the sink or enzymatic breakdown of structural carbohydrates within plant tissues. Despite the prevalence of research in this domain, the area of sugar selectivity and preferences exhibited by plant pathogenic bacteria remains inadequately explored. Within this expository framework, our present review endeavors to elucidate the intricate variations characterizing the distribution of simple sugars within diverse plant tissues, thus influencing the virulence dynamics of plant pathogenic bacteria. Subsequently, we illustrate the apparent significance of comprehending the bacterial preference for specific sugars and sugar alcohols, postulating this insight as a promising avenue to deepen our comprehension of bacterial pathogenicity. This enriched understanding, in turn, stands to catalyze the development of more efficacious strategies for the mitigation of plant diseases instigated by bacterial pathogens.

키워드

참고문헌

  1. Abbot, D. W. and Boraston, A. B. 2008. Structural biology of pectin degradation by Enterobacteriaceae. Microbiol. Mol. Biol. Rev. 72:301-316. https://doi.org/10.1128/MMBR.00038-07
  2. Aidelberg, G., Towbin, B. D., Rothschild, D., Dekel, E., Bren, A. and Alon, U. 2014. Hierarchy of non-glucose sugars in Escherichia coli. BMC Syst. Biol. 8:133.
  3. Aksic, M. F., Tosti, T., Sredojevic, M., Milivojevic, J., Meland, M. and Natic, M. 2019. Comparison of sugar profile between leaves and fruits of blueberry and strawberry cultivars grown in organic and integrated production system. Plants 8:205.
  4. Aldridge, P., Metzger, M. and Geider, K. 1997. Genetics of sorbitol metabolism in Erwinia amylovora and its influence on bacterial virulence. Mol. Gen. Genet. 256:611-619. https://doi.org/10.1007/s004380050609
  5. Alexandrino, A. V., Prieto, E. L., Nicolela, N. C. S., da Silva Marin, T. G., dos Santos, T. A., de Oliveira da Silva, J. P. M., da Cunha, A. F., Behlau, F. and Novo-Mansur, M. T. M. 2023. Xylose isomerase depletion enhances virulence of Xanthomonas citri subsp. citri in Citrus aurantifolia. Int. J. Mol. Sci. 24:11491.
  6. Ammar, E. M., Wang, X. and Rao, C. V. 2018. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose. Sci. Rep. 8:609.
  7. Bauer, K., Nayem, S., Lehmann, M., Wenig, M., Shu, L.-J., Ranf, S., Geigenberger, P. and Vlot, A. C. 2023. β-D-XYLOSIDASE 4 modulates systemic immune signaling in Arabidopsis thaliana. Front. Plant Sci. 13:1096800.
  8. Beattie, G. A. and Lindow, S. E. 1995. The secret life of foliar bacterial pathogens on leaves. Annu. Rev. Phytopathol. 33:145-172. https://doi.org/10.1146/annurev.py.33.090195.001045
  9. Berendsen, R. L., Pieterse, C. M. J. and Bakker, P. A. H. M. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478-486. https://doi.org/10.1016/j.tplants.2012.04.001
  10. Bolouri Moghaddam, M. R. and Van den Ende, W. 2012. Sugars and plant innate immunity. J. Exp. Bot. 63:3989-3998. https://doi.org/10.1093/jxb/ers129
  11. Breen, K., Tustin, S., Palmer, J., Boldingh, H. and Close, D. 2020. Revisiting the role of carbohydrate reserves in fruit set and early-season growth of apple. Sci. Hortic. 261:109034.
  12. Carmi, N., Zhang, G., Petreikov, M., Gao, Z., Eyal, Y., Granot, D. and Schaffer. A. A. 2003. Cloning and functional expression of alkaline alpha-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases. Plant J. 33:97-106. https://doi.org/10.1046/j.1365-313X.2003.01609.x
  13. Chen, L.-Q., Hou, B.-H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X.-Q., Guo, W.-J., Kim, J.-G., Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., White, F. F., Somerville, S. C., Mudgett, M. B. and Frommer, W. B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527-532. https://doi.org/10.1038/nature09606
  14. Corsaro, M. M., Evidente, A., Lanzetta, R., Lavermicocca, P. and Molinaro, A. 2001. Structural determination of the phytotoxic mannan exopolysaccharide from Pseudomonas syringae pv. ciccaronei. Carbohydr. Res. 330:271-277. https://doi.org/10.1016/S0008-6215(00)00279-2
  15. Fatima, U. and Senthil-Kumar, M. 2015. Plant and pathogen nutrient acquisition strategies. Front. Plant Sci. 6:750.
  16. Fu, H.-Z., Marian, M., Enomoto, T., Suga, H. and Shimizu, M. 2020. Potential use of L-arabinose for the control of tomato bacterial wilt. Microbes Environ. 35:ME20106.
  17. Glover, B. J. 2000. Differentiation in plant epidermal cells. J. Exp. Bot. 51:497-505. https://doi.org/10.1093/jexbot/51.344.497
  18. Ha, J.-H., Hauk, P., Cho, K., Eo, Y., Ma, X., Stephens, K., Cha, S., Jeong, M., Suh, J.-Y., Sintim, H. O., Bentley, W. E. and Ryu, K.-S. 2018. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr. Sci. Adv. 4:eaar7063.
  19. Hannah, M. A., Zuther, E., Buchel, K. and Heyer, A. G. 2006. Transportation and metabolism of raffinose family oligosaccharides in transgenic potato. J. Exp. Bot. 57:3801-3811. https://doi.org/10.1093/jxb/erl152
  20. Havesi, M., Farkas, A., Kasa, K. and Oros-Kovacs, Zs. 2004. Carbohydrate utilization of Erwinia amylovora in vitro. Int. J. Hortic. Sci. 10:31-34. https://doi.org/10.31421/IJHS/10/2/458
  21. He, Z., Olk, D. C., Tewolde, H., Zhang, H. and Shankle, M. 2020. Carbohydrate and amino acid profiles of cotton plant biomass products. Agriculture 10:2.
  22. Herbers, K., Meuwly, P., Frommer, W. B., Metraux, J. P. and Sonnewald, U. 1996. Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8:793-803. https://doi.org/10.2307/3870282
  23. Hlahla, J. M., Mafa, M. S., van der Merwe, R., Alexander, O., Duvenhage, M.-M., Kemp, G. and Moloi, M. J. 2022. The photosynthetic efficiency and carbohydrates responses of six edamame (Glycine max L. Merrill) cultivars under drought stress. Plants 11:394.
  24. Horsfall, J. G. and Dimond, A. E. 1957. Interactions of tissue sugar, growth substances, and disease susceptibility. Z. Pflanzenkr. Pflanzenschutz 64:415-421.
  25. Jahid, I. K., Lee, N.-Y., Kim, A. and Ha, S.-D. 2013. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila. J. Food Prot. 76:239-247. https://doi.org/10.4315/0362-028X.JFP-12-321
  26. Jeckelmann, J.-M. and Erni, B. 2020. Transporters of glucose and other carbohydrates in bacteria. Pflugers Arch. 472:1129-1153. https://doi.org/10.1007/s00424-020-02379-0
  27. Jha, S., Bhadani, N. K., Kumar, A. and Sengupta, T. K. 2021. Glucose-induced biofilm formation in Bacillus thuringiensis KPWP1 is associated with increased cell surface hydrophobicity and increased production of exopolymeric substances. Curr. Microbiol. 79:24.
  28. Kano, A., Hosotani, K., Gomi, K., Yamasaki-Kokudo, Y., Shirakawa, C., Fukumoto, T., Ohtani, K., Tajima, S., Izumori, K., Tanaka, K., Ishida, Y., Nishizawa, Y., Ichimura, K., Tada, Y. and Akimitsu, K. 2011. D-Psicose induces upregulation of defense-related genes and resistance in rice against bacterial blight. J. Plant Physiol. 168:1852-1857. https://doi.org/10.1016/j.jplph.2011.04.003
  29. Karthikeyan, S., Orellana, L. H., Johnston, E. R., Hatt, J. K., Loffler, F. E., Ayala-Del-Rio, H. L., Gonzalez, G. and Konstantinidis, K. T. 2021. Metagenomic characterization of soil microbial communities in the Luquillo Experimental Forest (Puerto Rico) and implications for nitrogen cycling. Appl. Environ. Microbiol. 87:e0054621 .
  30. Knights, H. E., Jorrin, B., Haskett, T. L. and Poole, P. S. 2021. Deciphering bacterial mechanisms of root colonization. Environ. Microbiol. Rep. 13:428-444. https://doi.org/10.1111/1758-2229.12934
  31. Kocal, N., Sonnewald, U. and Sonnewald, S. 2008. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiol. 148:1523-1536. https://doi.org/10.1104/pp.108.127977
  32. Martinez-Vilalta, J., Sala, A., Asensio, D., Galiano, L., Hoch, G., Palacio, S., Piper, F. I. and Lloret, F. 2016. Dynamics of nonstructural carbohydrates in terrestrial plants: a global synthesis. Ecol. Monogr. 86:495-516. https://doi.org/10.1002/ecm.1231
  33. Mercier, J. and Lindow, S. E. 2000. Role of leaf surface sugars in the colonization of plants by bacterial epiphytes. Appl. Environ. Microbiol. 66:369-374. https://doi.org/10.1128/AEM.66.1.369-374.2000
  34. Milkovska-Stamenova, S., Schmidt, R., Frolov, A. and Birkemeyer, C. 2015. GC-MS method for the quantitation of carbohydrate intermediates in glycation systems. J. Agric. Food Chem. 63:5911-5919. https://doi.org/10.1021/jf505757m
  35. Mochizuki, S., Fukumoto, T., Ohara, T., Ohtani, K., Yoshihara, A., Shigematsu, Y., Tanaka, K., Ebihara, K., Tajima, S., Gomi, K., Ichimura, K., Izumori, K. and Akimitsu, K. 2020. The rare sugar D-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical. Commun. Biol. 3:423.
  36. Mohan, B. H., Malleshi, N. G. and Koseki, T. 2010. Physicochemical characteristics and non-starch polysaccharide contents of Indica and Japonica brown rice and their malts. LWT - Food Sci. Technol. 43:784-791. https://doi.org/10.1016/j.lwt.2010.01.002
  37. Moing, A. 2000. Sugar alcohols as carbohydrate reserves in some higher plants. Dev. Crop Sci. 26:337-358. https://doi.org/10.1016/S0378-519X(00)80017-3
  38. Morandi, B., Corelli Grappadelli, L., Rieger, M. and Lo Bianco, R. 2008. Carbohydrate availability affects growth and metabolism in peach fruit. Physiol. Plant. 133:229-241. https://doi.org/10.1111/j.1399-3054.2008.01068.x
  39. Nesovic, M., Gasic, U., Tosti, T., Horvacki, N., Nedic, N., Sredojevic, M., Blagojevic, S., Ignjatovic, L. and Tesic, Z. 2021. Distribution of polyphenolic and sugar compounds in different buckwheat plant parts. RSC Adv. 11:25816-25829. https://doi.org/10.1039/D1RA04250E
  40. Pascale, A., Proietti, S., Pantelides, I. S. and Stringlis, I. A. 2020. Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front. Plant Sci. 10:1741.
  41. Sasse, J., Martinoia, E. and Northen, T. 2018. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23:25-41. https://doi.org/10.1016/j.tplants.2017.09.003
  42. Schaarschmidt, S., Kopka, J., Ludwig-Muller, J. and Hause, B. 2007. Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction. Plant J. 51:390-405. https://doi.org/10.1111/j.1365-313X.2007.03150.x
  43. Schlechter, R. O., Miebach, M. and Remus-Emsermann, M. N. P. 2019. Driving factors of epiphytic bacterial communities: a review. J. Adv. Res. 19:57-65. https://doi.org/10.1016/j.jare.2019.03.003
  44. Shelburne, S. A., Keith, D., Horstmann, N., Sumby, P., Davenport, M. T., Graviss, E. A., Brennan, R. G. and Musser, J. M. 2008. A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc. Natl. Acad. Sci. U. S. A. 105:1698-1703. https://doi.org/10.1073/pnas.0711767105
  45. Shrestha, A., Grimm, M., Ojiro, I., Krumwiede, J. and Schikora, A. 2020. Impact of quorum sensing molecules on plant growth and immune system. Front. Microbiol. 11:1545.
  46. Soria, A. C., Sanz, M. L. and Villamiel, M. 2009. Determination of minor carbohydrates in carrot (Daucus carota L.) by GC-MS. Food Chem. 114:758-762. https://doi.org/10.1016/j.foodchem.2008.10.060
  47. Tang, M., Bouchez, O., Cruveiller, S., Masson-Boivin, C. and Capela, D. 2020. Modulation of quorum sensing as an adaptation to nodule cell infection during experimental evolution of legume symbionts. mBio 11:e03129-19.
  48. Toruno, T. Y., Stergiopoulos, I. and Coaker, G. 2016. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 54:419-441. https://doi.org/10.1146/annurev-phyto-080615-100204
  49. Xu, Z., Xie, J., Zhang, H., Wang, D., Shen, Q. and Zhang, R. 2019. Enhanced control of plant wilt disease by a xylose-inducible degQ gene engineered into Bacillus velezensis strain SQR9XYQ. Phytopathology 109:36-43. https://doi.org/10.1094/PHYTO-02-18-0048-R
  50. Yamada, K., Saijo, Y., Nakagami, H. and Takano, Y. 2016. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354:1427-1430. https://doi.org/10.1126/science.aah5692
  51. Zhao, J., Xu, Y., Ding, Q., Huang, X., Zhang, Y., Zou, Z., Li, M., Cui, L. and Zhang, J. 2016. Association mapping of main tomato fruit sugars and organic acids. Front. Plant Sci. 7:1286.
  52. Zhao, Q. and Chen, X.-Y. 2016. Development: a new function of plant trichomes. Nat. Plants 2:16096.