DOI QR코드

DOI QR Code

Correlations between the group velocity of time-reversed Lamb waves and cortical bone properties in tibial cortical bone in vivo

생체 내 경골의 피질골에서 시간역전 램파의 군속도와 피질골 특성 사이의 상관관계

  • Received : 2023.08.03
  • Accepted : 2023.10.30
  • Published : 2023.11.30

Abstract

It is known that change in the bone strength of cortical bone constituting the outer shell of long bones such as the tibia or radius due to aging and osteoporosis is a risk factor for fracture. In this study, the group velocity of time-reversed Lamb waves generated in tibial cortical bone in vivo was measured using a time reversal method, and the correlations of the group velocity with the cortical bone thickness (cTh) and cortical bone mineral density (cBMD) closely related to the bone strength were investigated. It was found that the group velocity of time-reversed Lamb waves measured in the right tibia of 7 subjects showed a very high correlation, r = 0.90 (p < 0.0001), with the cTh and a relatively low correlation, r = 0.69 (p < 0.0001), with the cBMD. A limitation of this in vivo study is that the group velocity of time-reversed Lamb waves was measured for a normal group consisting of only 7 healthy adults. In the future, if the clinical usefulness of the time-reversed Lamb wave is demonstrated by follow-up studies on normal and osteoporotic groups consisting of a large number of healthy adults and osteoporotic patients, respectively, it is expected to improve the reliability of quantitative ultrasound technology for osteoporosis diagnosis. In addition, it is necessary to expand the skeletal site for measuring the group velocity of time-reversed Lamb waves not only to the tibia but also to the femur or radius.

노화 및 골다공증으로 인한 경골 또는 요골과 같은 긴 뼈의 외부 껍질을 구성하는 피질골의 골강도 변화는 골절의 위험인자로 알려져 있다. 본 연구에서는 시간역전법을 이용하여 생체 내 경골의 피질골에서 발생된 시간역전 램파의 군속도를 측정하고, 군속도가 피질골의 골강도와 밀접한 관련이 있는 cortical bone thickness(cTh) 및 cortical bone mineral density(cBMD)와 갖는 상관관계를 조사하였다. 7명의 실험대상자의 우측 경골에서 측정된 시간역전 램파의 군속도는 cTh와 r = 0.90(p < 0.0001)의 매우 높은 상관관계를 보이며, cBMD와는 r = 0.69(p < 0.0001)의 상대적으로 낮은 상관관계를 보이는 것으로 나타났다. 본 생체 내 연구의 한계점은 단지 7명의 건강한 성인으로 구성된 정상군에 대하여 시간역전 램파의 군속도가 측정되었다는 것이다. 향후 다수의 건강한 성인 및 골다공증 환자로 각각 구성된 정상군 및 골다공증군에 대한 후속연구를 통하여 시간역전 램파의 임상적 유용성이 입증된다면 골다공증 진단을 위한 정량적 초음파 기술의 신뢰도를 향상시킬 수 있을 것으로 기대된다. 또한 시간역전 램파의 군속도를 측정하기 위한 골격 부위를 경골뿐만 아니라 대퇴골 또는 요골까지 확장시킬 필요가 있다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1046161).

References

  1. P. Laugier, "Instrumentation for in vivo ultrasonic characterization of bone strength," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 1179-1196 (2008). https://doi.org/10.1109/TUFFC.2008.782
  2. K. A. Wear, "Mechanisms of interaction of ultrasound with cancellous bone: A review," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 67, 454-482 (2020). https://doi.org/10.1109/TUFFC.2019.2947755
  3. J. Karjalainen, O. Riekkinen, J. Toyras, H. Kroger, and J. Jurvelin, "Ultrasonic assessment of cortical bone thickness in vitro and in vivo," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 2191-2197 (2008). https://doi.org/10.1109/TUFFC.918
  4. P. Moilanen, "Ultrasonic guided waves in bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 1277-1286 (2008). https://doi.org/10.1109/TUFFC.2008.790
  5. P. H. F. Nicholson, P. Moilanen, T. Karkkainen, J. Timonen, and S. Cheng, "Guided ultrasonic waves in long bones: modelling, experiment and in vivo application," Physiol. Meas. 23, 755-768 (2002). https://doi.org/10.1088/0967-3334/23/4/313
  6. M. Sasso, M. Talmant, G. Haiat, S. Naili, and P. Laugier, "Analysis of the most energetic late arrival in axially transmitted signals in cortical bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56, 2463-2470 (2009). https://doi.org/10.1109/TUFFC.2009.1333
  7. M. Muller, P. Moilanen, E. Bossy, P. Nicholson, V. Kilappa, J. Timonen, M. Talmant, S. Cheng, and P. Laugier, "Comparison of three ultrasonic axial transmission methods for bone assessment," Ultrasound Med. Biol. 31, 633-642 (2005). https://doi.org/10.1016/j.ultrasmedbio.2005.02.001
  8. R. K. Ing and M. Fink, "Time-reversed Lamb waves," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 45, 1032-1043 (1998). https://doi.org/10.1109/58.710586
  9. R. Watkins and R. Jha, "A modified time reversal method for Lamb wave based diagnostics of composite structures," Mech. Syst. Signal Process. 31, 345-354 (2012). https://doi.org/10.1016/j.ymssp.2012.03.007
  10. K. I. Lee and S. W. Yoon, "Propagation of time-reversed Lamb waves in acrylic cylindrical tubes as cortical-bone-mimicking phantoms," Appl. Acoust. 112, 10-13 (2016). https://doi.org/10.1016/j.apacoust.2016.05.009
  11. K. I. Lee and S. W. Yoon, "Propagation of time-reversed Lamb waves in bovine cortical bone in vitro," J. Acoust. Soc. Am. 137, EL105-EL110 (2015). https://doi.org/10.1121/1.4904914
  12. K. I. Lee and S. W. Yoon, "Relationships of the group velocity of the time-reversed Lamb wave with bone properties in cortical bone in vitro," J. Biomech. 55, 147-151 (2017). https://doi.org/10.1016/j.jbiomech.2017.02.020
  13. D. J. Lee, N. H. Cho, and I. K. Han, "Assessment of bone density with pQCT: Short term precision and comparison with DXA," J. Bone Metab. 3, 149-156 (1996).
  14. H. Lamb, "On waves in an elastic plate," Proc. R. Soc. London A, 93, 114-128 (1917). https://doi.org/10.1098/rspa.1917.0008