DOI QR코드

DOI QR Code

Effect of Cementite Precipitation on Carburizing Behavior of Vacuum Carburized AISI 4115 Steel

진공침탄에 의한 AISI 4115강의 침탄 거동에 미치는 세멘타이트 석출의 영향

  • Gi-Hoon Kwon (Heat & Surface Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Hyunjun Park (Heat & Surface Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Yoon-Ho Son (Yujin SMC Co.) ;
  • Young-Kook Lee (Department of Materials Science and Engineering, Yonsei University) ;
  • Kyoungil Moon (Heat & Surface Technology R&D Group, Korea Institute of Industrial Technology)
  • 권기훈 (한국생산기술연구원 친환경열표면처리연구부문) ;
  • 박현준 (한국생산기술연구원 친환경열표면처리연구부문) ;
  • 손윤호 ((주)유진에스엠씨) ;
  • 이영국 (연세대학교 신소재공학과) ;
  • 문경일 (한국생산기술연구원 친환경열표면처리연구부문)
  • Received : 2023.11.06
  • Accepted : 2023.11.24
  • Published : 2023.11.30

Abstract

In order to examine the effect of cementite precipitated on the steel surface on the carburizing rate, the carburizing process was carried out at various boost times to measure the mass gain and carbon flux, phase analysis and carbon concentration analysis were performed on the surface of the carburized specimen. In the case of the only boost type, the longer the boost time, the more the mass gain by the diffused carbon follows the parabolic law and tends to increase. In particular, as the boost time increased, the depth of cementite precipitation and the average size of cementite on the steel surface increased. At a boost time of 7 min, the fraction of cementite precipitated on the surface is 7.32 vol.%, and the carburizing rate of carbon into the surface (surface-carbon flux) is about 17.4% compared to the calculated value because the area of the chemical (catalyst) where the carburization reaction takes place is reduced. The measured carbon concentration profile of the carburized specimen tended to be generally lower than the carbon concentration calculated by the model without considering precipitated cementite. On the other hand, in the pulse type, the mass gain by the diffused carbon increased according to the boost time following a linear law. At a boost time of 7 min, the fraction of cementite precipitated on the surface was 3.62 vol.%, and the surface-carbon flux decreased by about 4.1% compared to the calculated value. As a result, a model for predicting the actual carbon flux was presented by applying the carburization resistace coefficient derived from the surface cementite fraction as a variable.

Keywords

References

  1. J. L. Dossett and G. E. Totten: ASM Handbook, Volume 4A: Steel Heat Treating Fundamentals and Processes, pp. 581-590, ASM International, Materiasl Park, OH (2013). 
  2. M. L. Dong, X. F. Cui, B. W. Lu, X. R. Feng, G. Jin, L. Shi, and H. D. Wang: Journal of Alloys and Compounds, 814 (2020) 152308. 
  3. Y. Sarikaya and M. Onal: J. Alloy. Compd, 542 (2012) 253-256.  https://doi.org/10.1016/j.jallcom.2012.07.069
  4. M. Zhao, X. Han, G. Wang, G. Xu : International Journal of Mechanical Science, 148 (2018) 84-93.  https://doi.org/10.1016/j.ijmecsci.2018.08.021
  5. V. A. Munts and A. P. Baskatov: Met. Sci. Heat Treat, 22 (1980) 358-360.  https://doi.org/10.1007/BF00693263
  6. B. A. Moiseev, Y. M. Brunzel, and L. A. Shvartsman: Met. Sci. Heat Treat, 21 (1978) 437-442.  https://doi.org/10.1007/BF00780479
  7. G. E. Totten and M. A. H. Howes: Steel Heat Treatment Handbook, Marcell Dekker, Inc., New York, 1997. 
  8. R. Yamamoto, A. Nishimoto, and K. Toda: Materials Transactions, 64 (2023) 272-279.  https://doi.org/10.2320/matertrans.MT-H2022001
  9. S. KLOS and J. Patalas-Maliszewska: Energies, 14 (2021) 3699. 
  10. J. Taczala-Warga and S. Paweta: a review. Archives of Materials Science and Engineering, 119 (2023) 62-70.  https://doi.org/10.5604/01.3001.0053.4742
  11. H. Wang, J. Liu, Y. Tian, Z. Wang, and X. An: Coatings, 10 (2020) 1075. 
  12. M. Zajusz, K. Tkacz-Smiech, and M. Danielewski: Surface and Coatings Technology, 258 (2014) 646-651.  https://doi.org/10.1016/j.surfcoat.2014.08.023
  13. X. Wang, Z. Zurecki, and R. D. Sisson: J. Mater. Eng. Perform, 22 (2013) 1879-1885.  https://doi.org/10.1007/s11665-012-0294-0
  14. M. Sugiyama, K. Ishikawa, and H. Iwata: Adv. Mater. Process, 155 (1999) 29. 
  15. H. Jimenez, M. H. Staia, and E. S. Puchi: Surface and Coatings Technology, 120 (1999) 358-365.  https://doi.org/10.1016/S0257-8972(99)00464-8
  16. R. Collin, S. Gunnarson, and D. Thulin: J. Iron Steel Inst, 210 (1972) 785-789. 
  17. K. Shibanuma, S. Aihara, and S. Ohtsuka: ISIJ International, 54 (2014) 1719. 
  18. J. H. Shin, W. J. Lee, Y. P. Kim, and I. Y. Ko: Korean J. Met. Mater, 50 (2012) 517. 
  19. D. Bombac, M. Fazarinc, A. S. Podder, and G. Kugler: J. Mater. Eng. Perform, 22 (2013) 742-747.  https://doi.org/10.1007/s11665-012-0340-y
  20. O. K. Rowan and R. D. Sisson: J. Phase. Equilib. Diff, 30 (2009) 235-241.  https://doi.org/10.1007/s11669-009-9500-7
  21. H. J. Wang, B. Wang, Z. D. Wang, Y. Tian, and R. D. K. Misra: J. Mater. Sci. Technol, 35 (2019) 1218-1227.  https://doi.org/10.1016/j.jmst.2019.02.001
  22. Y. Tian, H. Wang, X. An, and Z. Wang: Mater. Res. Express, 6 (2019), 096516. 
  23. X. An, Y. Tian, B. Wang, T. Jia, H. Wang, and Z. Wang: Surface and Coatings Technology, 421 (2021) 127348. 
  24. H. Ikehata, K. Tanaka, H. Takamiya, H. Mizuno, and T. Shimada: Metallurgical and Materials Transactions A, 44 (2013) 3484-3493.  https://doi.org/10.1007/s11661-013-1722-y
  25. A. Engstrom, L. Hoglund, and J. Agren: Metall. Mater. Trans. A, 25 (1994) 1127-34.  https://doi.org/10.1007/BF02652288
  26. R. Hossain, F. Pahlevani, M. Z. Quardir, and V. Sahajwalla: Sci. rep, 6 (2016) 348. 
  27. T. D. S. Lamim, E. A. Bernardelli, C. Binder, A. N. Klein, and A. M. Maliska: J. Mater. Res, 18 (2015) 320. 
  28. J. E. Morral and G. R. Purdy: Scr. Metall. Mater, 30 (1994) 905-908.  https://doi.org/10.1016/0956-716X(94)90413-8
  29. O. D. Sherby, J. Wadsworth, D. R. Lesuer, and C. K. Syn: Materials transactions, 49 (2008) 2016-2027. https://doi.org/10.2320/matertrans.MRA2007338