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WEAK FACTORIZATIONS OF H!'(R™) IN TERMS OF
MULTILINEAR FRACTIONAL INTEGRAL OPERATOR ON
VARIABLE LEBESGUE SPACES

ZONGGUANG L1u AND HUAN ZHAO

ABSTRACT. This paper provides a constructive proof of the weak fac-
torizations of the classical Hardy space H!(R™) in terms of multilinear
fractional integral operator on the variable Lebesgue spaces, which the
result is new even in the linear case. As a direct application, we obtain
a new proof of the characterization of BMO(R™) via the boundedness of
commutators of the multilinear fractional integral operator on the vari-
able Lebesgue spaces.

1. Introduction and main results

The theory of Hardy spaces is vast and complicated, it has been systemati-
cally developed and plays an important role in harmonic analysis and PDEs. A
well-known result of Coifman, Rochberg and Weiss [1] provided a constructive
proof of the weak factorizations of the classical Hardy space H!(R") in terms
of Riesz transforms. The result depends upon the duality between H'(R™) and
BMO(R"™) and upon a new result linking BMO(R™) and the LP(R™) bound-
edness of certain commutator operators. Later on, Li and Wick [6] obtained
the same results in the multilinear setting. Subsequently, Wang and Zhu [9]
proved the factorization theorem for Hardy space via the multilinear fractional
integral operator on the weighted Lebesgue spaces.

On the other hand, function spaces with variable exponent arouse strong
interest not only in harmonic analysis but also in applied mathematics. The
theory of function spaces with variable exponent has made great progress since
some elementary properties were given by Kovédcik and Rdkosnik [5] in 1991.
Later, Cruz-Uribe, Fiorenza, Martell and Pérez in [2] proved that many classical
operators in harmonic analysis, such as maximal operators, singular integrals,
commutators and fractional integrals are bounded on the variable Lebesgue
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space. Recently, Tan et al. [7] studied some multilinear operators are bounded
on the variable Lebesgue spaces. In [8], Wang proved the weak factorization
of Hardy spaces in terms of the Calderén-Zygmund operator on the variable
Lebesgue spaces.

Motivated by the works above, we shall show the factorization theorem for
Hardy space via the multilinear fractional integral operator on the variable
Lebesgue spaces. In particular, the result is new even in the linear case. As a
direct corollary, we establish a full characterization of BMO(R™) via commuta-
tors of the multilinear fractional integral operator. The key point of the present
paper is first: to obtain the factorization theorem for the classical Hardy space
in terms of the multilinear fractional integral operator, it needs some tedious
calculations in applications; and second: to establish the factorization theorem
on the variable Lebesgue spaces without individual conditions on the variable
exponent.

Firstly, we recall some standard notations in variable LP spaces. Given a
measurable function p(-) : R” — [1,00), LP()(R™) denotes the set of measurable
functions f on R™ such that for some A > 0,

(5 e

This is a Banach space with the Luxemburg-Nakano norm

2\ P&
||f|LP(-):inf{/\>Ol/n <|f()\)|> del}.

The variable Lebesgue spaces are a special case of Musielak-Orlicz spaces. De-
fine P(R™) to be the set of p(-) : R" — [1,00) such that

p— =ess infp(x) > 1, py = ess supp(x) < co.
TER™ ZER™

Denote p/(z) = p(z)/(p(x) — 1). Let B(R™) be the set of p(-) € P(R™) such
that the Hardy-Littlewood maximal operator M is bounded on LP()(R™), see

[3]-

In variable Lebesgue spaces there are some important lemmas as follows.

Lemma 1.1 ([3]). Ifp(-) € P(R™) and satisfies

(11) (o) = p(0)| € e e —ul <172
and
(1.2) Ip(z) — pool| < log(e + |2])’ lyl = |,

then p(-) € B(R™).
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Lemma 1.2 ([5]). Let p(-) € P(R"). If f € LPO(R™) and g € LP'O)(R™), then
fg is integrable on R™ and

/ F@g(@dz < rpll Fll oo Il o

where ry =1+ 1/p_ —1/py.

This inequality is named the generalized Holder’s inequality with respect to
the variable Lebesgue spaces.

Lemma 1.3 ([4]). Let p(-) € P(R"™) satisfy conditions (1.1) and (1.2) in
Lemma 1.1. Then

IxellLrer = {'Qw(m) if Q] < 2"and x € Q,
QllLr) .

QIMP=if|QI =1
for every cube (or ball) Q C R™, where ps = limy 00 p(T).

We now recall the definition of multilinear fractional integral operator. Let
0 < a < mn, m € N, the multilinear fractional integral operator is defined by

IT5% £i ()
I (f1, fo, - -, x) = = dyy -+ dym.
alf1, f2 fm) (@) /n (x—y1,..., & —ym)|™ n Ym
For convenience, we also denote K (x,y1,...,Ym) = |(x —y1,..., T —ym)|* ™"
For [ =1,2,...,m, we define the multilinear “multiplication” operators II; as

follows.

Hl(gv hl? R hﬂl)(x) = hl(I;)l(hh RN} hl—lagv h’l-‘rlv ey hm)(ﬂf)
- gIOé(hlv BERE) hm)(l'),
where (1), is the I-th partial adjoint of I,.

Our main result is the following factorization result for H'(R™) in terms of
the multilinear operator II;. The result is new even in the linear.

Theorem 1. 1 Let 1 < l <m, 0<a<mn, q(-),p1(:),...,pm(-) € B(R™),
(m) +t 5 (m) -2 = q(x) x € R™. Then for any f € H*(R"™), there exist se-

quences {)\];} e ' and functions g € LIC J(R™), k€ LPORY),... BE €

LPmC)/(R™) such that

(1.3) F=Y Mgk nk,. .. k)

k=1 s=1

in the sense of H'(R™). Moreover,

[[f]l ety ~ inf { > Z XSS oo IS 2 Loves =~ 1Sl o }

k=1s=1

where the infimum above is taken over all possible representations of that satisfy
(1.3).
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As a direct application, we will give the characterization of BMO via com-
mutators of the multilinear fractional integral operator on variable Lebesgue
spaces. In analogy with the linear case, we define the [-th possible multilinear
commutators of the m-th multilinear fractional integral operator I, as follows.

0, La)i(f1y -y fm)(@) == T (f1y ooy bf1y o ooy fin) (@) = OI0(f1, - -y fn) ().

It was first shown in [7] that given 0 < a < mn, q(-),p1(:), ..., pm(-) € B(R™),
m Tt w2 = oGy © €R”, then

pm(w) n
[b, o), : LP*O) x ... LPm() — [90),

Theorem 1.2. Let 1 <1 <m, 0 < a < mn, q(-),p1(-),...,pm(-) € B(R™),
p%(m) +o 4t p%(m) - = ﬁ, x € R™. The commutator [b,1,]; is bounded
from LP1C) x ... x LPm() to LIC) if and only if b € BMO(R™).

Throughout this paper, the letter C' denotes constants which are independent
of the main variables and may change from one occurrence to another. We use

the symbol A < B denote that there exists a constant C' > 0 such that A < CB.
If A< B and B < A, we then write A = B.

2. Auxiliary lemmas and proof of theorems

In this section we turn to proving our main results. We collect some facts
that will be useful in proving the main result. We first provide a technical
lemma about certain H'(R™) functions.

Lemma 2.1. Let f be a function satisfying the following estimates:

(1) Jgn f(z)dz = 0;

(ii) there exist balls By = B(x1,r) and By = B(xa,r) for some x1,x2 € R™
and r > 0 such that

|f(@)] < ur(2)xB, () + u2(2)x B, (2),
where ||u;||pe < Cr=™,i=1,2;
(111) |.’L‘1 — .’L'2| > 4r.
Then there exists a positive constant C' independent of x1,xo,r such that

xry —x
£l < Clog 721,

Proof. Assume that f := f; + fo, where |f;| < w; and supp f; C B;, i = 1,2.
We will show that f has the following atomic decomposition

2 Jo+1
(2.1) F=>Y" Mad,

i=1 j=1

|z1—x2|

and for each j, a is a
T K3

where Jy is the smallest integer larger than log
(1,00)-atom and X} a real number satisfying that

(2.2) N <e,
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To this end, for ¢ = 1,2, we write

fi = [fi@) = Mxs,] + Mxs, = £ () + M xs,.

< 1
A= ——— i(z)dz.
b= gy [ e
Let Al := || f}|lL=|2B;| and a} := f}/Al. From the fact that

TR 17 P
”az”LOO - Azl - |2Bz|7

we know that a} is a (1, 00)-atom supported on 2B; and A} satisfies (2.2). For
i = 1,2, we further write

where

AiX2B, = A X2B, — AiXaB, + NiXap, =t [ + NXap,,

~ 1
)\2::—/ i(x)dx.
LB Bif()

Let A2 := || f2|| L= |4B;| and a? := f2/)?. Then we see that a? is a (1, 00)-atom
supported on 4B; and

where

2 31 ‘4Bi|
38 < S4B, < Rl ilel Bl < C.
Continuing in this process we see that for j € {1,2,...,Jo},
Jo 2 2 Jo 2
F= 3 [+ M, = [ Lol + Mo
i=1 Lj=1 i=1 i=1 L j=1 i=1

where for j € {2,3,...,Jo},

1

Jo._ -1, NI
fi = X2i-1B; — )\iXQJB,p

No= |~ and o = f] /2.

\J .
Ni=

Moreover, for each i and j, af is a (1, 00)-atom and ‘/\“ <C.
For 37 A Xou0 p, we set
1
|B(%’2Jo+lr)‘ -
1
|B(%>2JO+1T)| B(z2,r)

Mo =

This shows that

2
N J 3 J N Ji
Z)‘iOXB(zi,QJOT) = [)‘IOXB(wl,2J0r) - A OXB(“El;rZ'Z)QJU-%—lT)]
i=1
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+ [S‘JOXB(%QJO-HT) + 5‘QQIOXB(wg,?]UT)]

2
—. fJo-‘rl
: E i .
i=1

For i =1,2, let
AT = T e | B2, 2704 )|

and
Jo+1 . pJo+1 /yJo+1
a; = f; JAT

Then we see that a7 is a (1,00)-atom and \/°™! satisfies (2.2). Thus, we

have (2.1) holds, which implies that f € H'(R™) with
2 Jo+1 |.’I] T |
j 1— %2
Il <30 3 ] < Clog =22
i=1 j=1

This finishes the proof of Lemma 2.1. O

Lemma 2.2. Suppose 1 <1 <m. Let 0 < a < mn, q(-),p1(:),...,pm(-) €
B(R™) with

ol a1
pi(z) pm(®) n q(z)’
There exists a positive constant C' such that for any g € qu(')(R") and h; €
LPiO(RY), i=1,2,...,m

1T (g, hay - P )z @ey < Clligll oo hall o = ol Lomes -
Proof. Note that for any g € Lq’(')(R”) and h; € LPO)(R™), i =1,2,...,m, by

Lemma 1.2, we have

/ 9(@) o (has .oy b ) (@)|de < Cllgll o [La(hs - b))l pac)

m
< Cliglgwes [T IRl poico-

i=1
On the other hand, the directly calculation gives that
1 1 1 o

[ _— = =,

MO 2 n@ 7@
form which follows that

Ia . Lpl(') X oo+ X Lplfl(') X Lq/(') X Lpl+l(') NEERD me(‘) — Lpg()

This implies that IT;(g, h1, ..., hy)(z) € L*(R™) by Holder duality. Moreover,

/ (g, b, - hun ) ()i = 0.
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Hence, for b € BMO(R"),

’ /n b(@) (g, b1, - - -, han)(@)dz

/g(:c)[bJa}l(hl,...,hm)(as)dx
< Cligll Lo M116; LaJi(hay - - s o)l paco
< Clgllpo o lpallporer == Mhmll Lome bl B0
Therefore, I1;(g, hi, ..., hy) is in HY(R™) with
Ii(gs has o ) L @ny < Cligllpar o 1Pl o === [amll Lomcr -
The proof of Lemma 2.2 is completed. U

Lemma 2.3. Let 1 <1 <m, 0 < a < mn, q(-),p1(:),...,pm () € B(R"),

7171%90) 4ot Tﬁ(m) -2 = ﬁ, x € R™. For every H(R™)-atom a(x) and for

all € > 0, there exist g € Lq/(')(R") and h; € LPO)(R™), i =1,2,...,m, and a
large positive number M (depending only on €) such that
lla =i (g, has .- b))l 1 Rry < €

and that ||g|| oo Pl per o) - [Bml pomey < CM™ =% where C is an absolute
positive constant.

Proof. Let a(z) be an H!'(R™)-atom, supported in B(zg,r), satisfying that
/ a(z)dz =0 and |al|pe®n) < |B(zo,r)| "

Fix 1 <1 < m. Now select y; € R" so that y;; — z9; = %, where zg;
(resp. yi,i) is the i-th coordinate of o (resp. y;) for i = 1,2,...,n. Note that
for this y;, we have |xg — y;| = Mr. Similar to the relation of zy and y;, we
choose y; such that yg and y; satisfies the same relationship as zg and y; do.
Then by induction we choose Yo, ..., Yi—1,Yi+1,- - - Ym- We write B; = B(y;,r)
and set

g(x) :== xB,(x),
o(By) = /B Lz

hj(z) = xp,(x), j #1,

a(z) 9(By)
hi(z) := x).
) = g, s o)) 1B <P )
For the specific choice of the functions hq,...,h_1,9, hiy1,- .., hn as above,

we have that there exists a positive constant C such that

‘(I;)l(hly ey hl*hga hl+17 ey hm)(x0)|
9(z1) Hj;él hj(z;)

>C
Bix-xBy, ([To =21+ 4 |zo — 2| )77

dz1 - dzm,
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> C(Mr)*~mg(B) []1Bs-
il
The definition of the functions g and h; gives that suppg = B(y;,r) and
supp h; = B(y;,r). Moreover,

lgllzerey = lIxBllgerey  and [kl p;or = lIxB; | pso
forj=1,...,1—1,1+1,...,m. Also we have
llall L= g(B1)
hill gy < B ©
Wl < T g, s ) G| 1B Xl

m
<oy TI1B I r " lxs -
j=1

Combining the estimates above, if |B(y;,r)| = |B(y;j,r)| > 1, by Lemma 1.3,
we have

gl Lo 1hall Loy - = ([ | Lom
m
< C”XBZ ”LQ’(-) H HXBj ||LPJ‘(-) (Mr)mniaH|Bj|71’l“inHXBl ||Lpl(.)
J#l j=1

m
1 1
< C|Bi| 7% [] 18|77 (My)ymm=ep=mn=n

j=1
S Can_a,
where
o= lim ¢'(z) = lim 1+; =1+ !
qOO_m—)ooq ey q(z)—1 - Qoo — 1

If [B(yi,7)| = |B(y;,7)| < 2", Lemma 1.3 implies that

19l 1Pallosc - - ([Pl Lom ey

m
< Clixallparer [T Ixs s oo Mr)y™ =T [1B; 1 " lIxs, |
i# i=1

m
< C|Bi[700 [] 1B, |77 (Mgrymn=ey=mn=n

j=1

< Cr(pl(lzﬂ) o p1(1yz) Jr'”erm(lym) - pml(yl) +17%)”(M7n)m”*ar*m”*"
< Can—a
where in the last inequality we use the fact that
Lo v e —pily) o C
pi(w;)  piw)  pi(y)pi(w) T ((pi)-)?
and [B(y,r)| = [B(y;,r)| =" < 2™




WEAK FACTORIZATIONS OF H'(R™) 1447

Next, we have
a(x) = (g, hi,y ..., hm)(x)

a(x) - <hl(I;)l(h’17 DRI hl—lvg7 hl+17 sy h’YVL)(‘T) - gIa(hla sy hm)(l‘))
_ a(.’l’;) (I;)l(hh .. ~7hl—1797 hl+l7 .. >hm)(f0) - ([;)l(hh .. ~7hl—17g7hl+17 .. 7hm)(~7")
(I;)l(hl,...,hl_l,g, hl+1,...,hm)(x0)
+g(@)Io(h1,- - hy)(x)
= Wl(l') + WQ(.T)

By definition, it is obvious that Wi (z) is supported on B(xg,r) and Wa(x) is
supported on B(yo, ).
We first estimate Wi (z). For « € B(xg,r), we have

(Wi (z)]

— |a,(x)| |(I(*y)l(h17 ) hl*17g> hl+17 ) hm)(fL'()) - (I;)l(hh ey ’Llfl,g, hl+1> A 7hm)(x)‘
|(L)u(hay o b1, g s - e ) (0)

Cllal| |z —20lg(20) [T, 2y (25) don o

— —mn m po—— 1" m

(]WT)W g(Bz) Hj;gl ‘Bj| H_;"zl B(y;,r) (Zizl.i;ﬁl |Zl - Zz| + |Zl — x0|) +1
< Cr—m rg(B;) H].?él | B;|
= (A/[T,)a—mng(Bl) Hj;él ‘B]| (]\/f,r)mnfcwrl

C

< .

Mrm

Hence we obtain that

C
Wi ()] < WXB(xo,r)(f)-
Next we estimate Ws(z). From the definition of g(z) and h;(x), we have

o (R, ...y hm)(2)]

1
B ‘(I;)l(hla cey hl*lvga hl+1, LR hm)(xo)
X / (K(zl,...,zl_l,xo,zl+1,...,zm)
H]‘#L B(ij"’)XB(woﬂ")

—K(21, 211, T, 2141, -« - s zm))a(zl) th(zj)dzl coedzy,
il
C(Mr)™=<|a|| oo / |z — 2ol xm, (22) [Tj00 1hs(25)]
- (B Hj#l | B; 1, B(y;»m)xB(zo,7) (2211.2';&1 |21 — 2| + 21 — @o) ot
C
My’

dz1 -+ -dzy,

IN



1448 Z. LIU AND H. ZHAO
where in the first equality we use the cancellation property of the atom a(z;).
It follows that o
WZ(-T> < WXB(ZH»T) (1’)
Combining the estimates of W1 (z) and Wy(z), we obtain that

C
(2.3) la(@) = Iig, hu, . ) (@)] < 72 (XB (w0, (%) + XB () (2)-
Notice that

(2.4) /n[a(x) (g, B, o) ()] = 0,

because the atom a(z) has cancellation and the second integral equals 0 just by
the definitions of II;. Then the size estimate (2.3) and the cancellation (2.4),
together with Lemma 2.1, show that

log M
la =g, bty o) 1 ey < =2
For M sufficiently large such that
ClogM <
— <c
Thus, the result follows from here. ([

With this approximation result above, we can give the proof of Theorem 1.1.
Proof of Theorem 1.1. By Lemma 2.2, it is obvious that
IT(g, by - - s han) | @y < Cllgllparo 1hallpeces - [hmll pome -

It is immediate that for any representation of f asin (1.3), i.e.,

f= iiAle(gfvhg,l’ .- "h];,m)7

k=1 s=1
with

o0 o0

1t ey < 0{ S R o 185y o - ||h’;,m||m<v>},
k=1s=1

where the infimum above is taken over all possible representations of that satisfy
(1.3).

We turn to show that the other inequality holds and that it is possible
to obtain such a decomposition for any f € H!(R™). Applying the atomic
decomposition, for any f € H'(R") we can find a sequence {\!} € ¢! and
a sequence of H'(R")-atom {al} so that f = > o0, Alal and Y o0, |Al| <
Ol flln-

Fix € > 0 so that Ce < 1. We apply Lemma 2.3 to each atom al, then there

exist g € LYO(R), bl € LPO(R™), ... AL, € LPnO)(R") with

Hai - H]}l(g;v h?,h LR hi,m)”H1 <e, Vs

S



WEAK FACTORIZATIONS OF H'(R™) 1449

and
lgsllLwrer s 1l prer b | Loy < Cle, ),
where C'(e,a) = CM™"~* is a constant depending on ¢ and «. Notice that

F=3 Al
s=1

= Z )‘inl(g;’ hi,l? RN hi,m) + Z)‘i(a; - Hl(9;7 h;,la EER) h;,m))
s=1 s=1
:ZA41+nE1
Moreover,

1B <> Alal = T(gd, bl vy b )l <€ AL < Cellfllan

s=1 s=1

In addition, since F; € H!(R™), we can also find a sequence {\?} € ¢! and
a sequence of H'(R")-atom {a?} so that By = > oo A2a? and

Y < ClE g < Cl £l

s=1

Again, applying Lemma 2.2 to each atom a2, then there exist g2 € L0 (R™),
h2, € LPO(R™), ... b2, € LP»O)(R") with

||a§ _Hj,l(ggvhi,lw"7h§,m)”H1 <¢g, Vs.
We then have

o0
Ey =) Ma?
s=1

=D XN(g 2y, b2 ) + D AN — (g2 A2y, B2 )
s=1 s=1
:ZA42+nE2

As before, obvious that

1Ballrs <D INMaZ = T2, B2 1 B2 ) s < &) INZ] < (Ce)|| £l

s=1 s=1

This gives us that
f=>_Aal
s=1

=D ATL(gs Alas s b ) + D AN(ad = Th(gd by s By )
s=1 s=1

=M+ E1 = My + Ms + E»
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2 oo
:ZZAEHl gs7 s, 7"'ah§7m)+E2.

k=1s=1

Repeating this construction for each 1 < k& < K produces functions g* €

LYO(RM), bk e LnOR), ... hE e LPmO)(R™) with
HQSHL‘J()Hh 1||L7’1() ”h.lsc,mHLl’m(') < C(E‘,O{), Vs,
a sequence {\*1 € ¢! with || \¥|[x < CFeF=L||f|| g1 (R™), and a function Ex €
H'(R") with
Bl < (Ce) ™| £l

so that

f ZZAkHl gS’hsl7"'ahf7m)+EK.

k=1s=1

Letting K — oo gives the desired decomposition of

f = ZZAEHl(gfvhsla e '7h§,m)'

k=1 s=1
We conclude that
(o ] oo oo C
D WEES WIS
k=1 s=1 k=1
Thus, we have completed the proof of Theorem 1.1. ([

Finally, we dispense with the proof of Theorem 1.2.

Proof of Theorem 1.2. The upper bound in this theorem is contained in [7].
For the lower bound, suppose that f € H'(R"), using the weak factorization
in Theorem 1.1 and the boundedness of [b, I,,];, we obtain

bfLQZZZ)‘kaZ gs? s, 7"'7hfm)>

=1s=1
Z)‘k gs7 b I ]l hsl7""h§,m)>L2
k=1s=1

Hence, we have that

\<b Fris] <3S NG o . T (B 1o B
k=1s=1
o0 o0 m
<M Ll oo sz S5 a8 L TTIAE o

k=1 s=1 j=1
< O, Ia)ill r1 ) e e Lom ) o pao | f 1 E2
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From the duality theorem between H!(R"™) and BMO(R™), it follows that b €
BMO(R™). O

(1]

2]
(3]

(4]

(5]

(6]

[7]

8

(9]

References

R. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in
several variables, Ann. of Math. (2) 103 (1976), no. 3, 611-635. https://doi.org/10.
2307/1970954

D. V. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, The boundedness of classical
operators on variable LP spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239-264.
D. V. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The mazimal function on variable
LP spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223-238.

L. Diening, P. Harjulehto, P. Hasto, and M. Ruzi¢ka, Lebesgue and Sobolev Spaces with
Variable Ezponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.
https://doi.org/10.1007/978-3-642-18363-8

0. Kovacik and J. Rékosnik, On spaces LP(*) and W¥P®)  Cgzechoslovak Math. J.
41(116) (1991), no. 4, 592-618.

J. Li and B. D. Wick, Weak factorizations of the Hardy space H'(R™) in terms of
multilinear Riesz transforms, Canad. Math. Bull. 60 (2017), no. 3, 571-585. https:
//doi.org/10.4153/CMB-2017-033-9

J. Tan, Z. Liu, and J. Zhao, On some multilinear commutators in variable Lebesgue
spaces, J. Math. Inequal. 11 (2017), no. 3, 715-734. https://doi.org/10.7153/jmi-
2017-11-57

D. Wang, Notes on commutator on the variable exponent Lebesgue spaces, Czechoslovak
Math. J. 69(144) (2019), no. 4, 1029-1037. https://doi.org/10.21136/CMJ.2019.0590-
17

D. Wang and R. Zhu, Weak factorizations of the Hardy space in terms of multilinear
fractional integral operator, J. Math. Anal. Appl. 517 (2023), no. 1, Paper No. 126608,
12 pp. https://doi.org/10.1016/j. jmaa.2022.126608

ZONGGUANG Liu

DEPARTMENT OF MATHEMATICS

CHINA UNIVERSITY OF MINING AND TECHNOLOGY
BEwING 100083, P. R. CHINA

Email address: 1iuzg@cumtb.edu.cn

HuaN Zuao

DEPARTMENT OF MATHEMATICS

ZHEJIANG UNIVERSITY OF SCIENCE AND TECHNOLOGY
Hangzrou 310023, P. R. CHINA

Email address: zhaohuanmath1994@163.com


https://doi.org/10.2307/1970954
https://doi.org/10.2307/1970954
https://doi.org/10.1007/978-3-642-18363-8
https://doi.org/10.4153/CMB-2017-033-9
https://doi.org/10.4153/CMB-2017-033-9
https://doi.org/10.7153/jmi-2017-11-57
https://doi.org/10.7153/jmi-2017-11-57
https://doi.org/10.21136/CMJ.2019.0590-17
https://doi.org/10.21136/CMJ.2019.0590-17
https://doi.org/10.1016/j.jmaa.2022.126608

