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ON A GENERALIZATION OF UNIT REGULAR RINGS

Tahire Özen

Abstract. In this paper, we introduce a class of rings generalizing unit

regular rings and being a subclass of semipotent rings, which is called

idempotent unit regular. We call a ring R an idempotent unit regular
ring if for all r ∈ R − J(R), there exist a non-zero idempotent e and

a unit element u in R such that er = eu, where this condition is left
and right symmetric. Thus, we have also that there exist a non-zero

idempotent e and a unit u such that ere = eue for all r ∈ R − J(R).

Various basic characterizations and properties of this class of rings are
proved and it is given the relationships between this class of rings and

some well-known classes of rings such as semiperfect, clean, exchange and

semipotent. Moreover, we obtain some results about when the endomor-
phism ring of a module in a class of left R-modules X is idempotent unit

regular.

1. Introduction

Throughout this paper, R means an associative ring with identity. We write
J(R) (or J) for the Jacobson radical of R and Nil(R) for the set of nilpotent
elements of R. A ring R is called a unit regular ring if for all r ∈ R there exists
a unit element u such that rur = r which is introduced by Ehrlich in [9] and
the set of all unit regular elements is denoted by ur(R). If R = ur(R), then
it is called a unit regular ring. The properties of unit regular rings have been
extensively studied in the literature (see [3], [9] and [10]). It is easily proved
that R is unit regular if and only if every element of R is the product of an
idempotent and an invertible element and hence, we see that if a ring R is unit
regular, then J(R) = 0 and in addition, a unit regular ring is an idempotent
unit regular ring, but the converse may not be satisfied. This paper is organized
as follows:

Firstly, in Section 2, we give some basic properties and examples of idem-
potent unit regular rings and in addition, we obtain the relationships between
these rings and some very well-known rings such as semiperfect, J-clean, nil
clean, clean, exchange and semipotent rings. In Section 3, we investigate the
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rings of upper(lower) triangular matrices and any n × n matrices over idem-
potent unit regular rings. Finally, in Section 4, we prove that if End(MR) is
the ring of endomorphisms on a semisimple module 0 ̸= MR, then we prove
that End(MR) is an idempotent unit regular ring and in addition, for any
projective R-module PR over a right perfect ring R, the endomorphism ring
End(PR) is idempotent unit regular. In addition, we give some conditions to be
that End(MR) is an idempotent unit regular ring, where MR is a nonsingular
injective (continuous, discrete or quasi injective) module.

If every element not in J(R) of a ring R is a sum of a unit and an idempotent
which is not identity, then we call it a clean ring with idempotent not identity,
which is introduced in [1]. Any idempotent unit regular ring may not be a clean
ring. We can directly see that every clean ring with idempotent not identity
is idempotent unit regular. But, we don’t know whether or not any clean ring
is an idempotent unit regular ring and also a clean ring with idempotent not
identity.

Let’s recall some well-known definitions. A ring R is semi-simple if RR is a
semi-simple module. A ring R is semi-perfect if and only if R/J(R) is semi-
simple and idempotents lift modulo J(R). A ring R is an exchange ring if, for
every r ∈ R, there exist an idempotent e ∈ rR such that (1−e) ∈ (1−r)R (see
[15]). For example, every regular ring (that is, a ring, such that for all a ∈ R,
there exists b ∈ R satisfying a = aba) is exchange. Clean rings were defined by
Nicholson as a subclass of exchange rings in [15] and have been studied by many
authors. A ring is called clean if every element is the sum of an idempotent
and a unit. Every semi-perfect and unit regular ring are clean (see [3] and [11]
for more details). A semi-potent ring is that there exist 0 ̸= e = e2 and r ∈ R
such that ar = e for all a ∈ R − J(R) and this ring property is both left and
right symmetric which was introduced by Nicholson in [14]. We can see that
every idempotent unit regular ring is semi-potent since ea = eu implies that
u−1ea = u−1eu.

We denote Mn(R) and Un(R) for the ring of all n×n matrices and the ring
of all n× n upper triangular matrices over the ring R, respectively. Let Eij be
an n × n matrix with ij-th entry 1, otherwise 0. The ring of integers modulo
n is denoted by Zn. We denote the polynomial ring over R by R[x] and the
formal power series over R by R[[x]] with elements a0 + a1x+ · · ·+ aix

i + · · · ,
where ai ∈ R for i ∈ N.

2. Preliminary results

Definition 2.1. Let R be an associative ring with identity. r ∈ R − J(R) is
called an idempotent unit regular element if there exist a nonzero idempotent
element e and a unit element u such that er = eu. We denote the set of
idempotent unit regular elements by iur(R). If R = iur(R) ∪ J(R), then
it is called an idempotent unit regular ring. Thus, the class of idempotent
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unit regular rings is between the class of unit regular rings and the class of
semipotent rings.

Lemma 2.2. Idempotent unit regular property is left and right symmetric.

Proof. Let ea = eu, where 0 ̸= e idempotent and u unit. If we take as e1 =
u−1eu and e2 = au−1e, then we have that ae1 = e2u. Let e3 = u−1e2u and
then ae1 = ue3. Since e1e3 = e1 and e3e1 = e3 and (e1−e3)

2 = 0, we have that
ae1 = ue3 = u(1−e1+e3)(1+e1−e3)e3 = u(1−e1+e3)e1, where u(1−e1+e3)
unit and 0 ̸= e1 idempotent, as required. □

Example 2.3. (i) Every abelian regular ring is unit regular and hence, it is
idempotent unit regular (see [9]).

(ii) Z4 is an idempotent unit regular ring (and also a clean ring with idem-
potent not identity), but it is not a unit regular ring.

(iii) Now, we give an example which is weakly clean, exchange and hence,
semi-potent but not an idempotent unit regular. Let F be a field and MN(F )
be a ring of all infinite matrices over F with finite columns. Let R = {A =
[aij ] ∈ MN(F ) : there exists nA ∈ N such that aij = a(i+1)(j+1) for every
i ≥ nA and j ≥ 1}. By [18, Example 3.1], we see that every idempotent and
unit in R are upper triangular if we ignore the first finitely many rows. Then
the product of a nonzero idempotent and a matrix (that are nonzero below
the main diagonal ignoring the first finitely many rows) cannot be written as a
product of a nonzero idempotent and a unit in R. Thus, R is not an idempotent
unit regular ring. But it is a weakly clean ring and hence exchange and then
semi-potent ring (see [18, Remark 2.4]).

(iv) Let V = ⊕∞
i=0Q and S = {(b, b, . . .) : b ∈ Z}. Let R be the sub-

ring of
∏∞

i=0 Q generated by V and S. Then R is an idempotent unit regular
abelian ring, but it is not exchange and hence it is not clean and not unit
regular (see [19]). In general, let S be a subring of a ring T and R(T, S) =
{(d1, . . . , dn, c, c, . . .) : n ≥ 1, di ∈ T, c ∈ S} which is a ring under componen-
twise addition and multiplication. Then R(T, S) is idempotent unit regular if
and only if so is T . Using also [3] we understand that the class of unit regular
rings ⊂ the class of clean rings with idempotent not identity ⊂ the class of
idempotent unit regular rings.

R is called a J (nil)-clean ring, where J = J(R) in case for every element
a ∈ R, there exist an idempotent e and an element b ∈ J (b ∈ Nil(R)) such
that a = e + b (see [6] and [8]). We see that every J (nil)-clean ring is clean.
We will prove in the following that such clean rings are also idempotent unit
regular.

Lemma 2.4. J-clean, nil-clean abelian and uniquely clean rings are clean rings
with idempotent not identity and so, idempotent unit regular rings.

Proof. Let R be a J-clean ring and a /∈ J . Then we have an idempotent element
e and an element b ∈ J such that a = e+ b. Thus, a = 1− e+ (−1 + 2e+ b),
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where (−1 + 2e+ b) is unit since (−1 + 2e)2 = 1 and e ̸= 0. Thus, R is a clean
ring with idempotent not identity and so it is idempotent unit regular.

Let R be a nil-clean ring and a /∈ J . Since R is nil-clean, there exist an
idempotent e and b ∈ N(R) such that a = e+ b. We have that N(R) ⊆ J(R)
by [8], and hence R is J-clean which yields the required.

Let R be a uniquely clean ring. By Corollary 3.4 in [7] there exists a central
idempotent e ∈ R such that e − a ∈ J(R) for any a ∈ R. If a /∈ J(R), then
a− e ∈ J(R) with e ̸= 0 and hence R is J-clean which yields the required. □

Corollary 2.5. Let R/J be a boolean ring and idempotents lift modulo J . Then
R is an idempotent unit regular ring.

Proof. Let a + J be a non-zero element of R/J . Then a2 − a ∈ J and hence
there exists an idempotent e ∈ R such that a − e ∈ J . Thus, we have an
element b ∈ J such that a = e + b which says that R is J-clean. By Lemma
2.4, R is an idempotent unit regular ring. □

A ring R is called I-finite if it has no infinite orthogonal family of idempo-
tents. It is proved in [14] that every primitive idempotent is local in a semi-
potent ring and I-finite semi-potent ring is semi-perfect. We give the following
lemma without proof.

Lemma 2.6. The following are satisfied:

(i) Let (Ri)i∈I be a family of some rings. All the Ri are idempotent unit
regular if and only if

∏
i∈I Ri is idempotent unit regular.

(ii) Let f : R → S be a ring isomorphism with f(1R) = 1S. If R is an
idempotent unit regular ring, then so is S.

(iii) Every primitive idempotent in an idempotent unit regular ring is local.
(iv) Every I-finite idempotent unit regular ring is semi-perfect and hence,

it is clean.

Lemma 2.7. If R is an idempotent regular ring, then so is R/J . The converse
is satisfied if idempotents lift modulo J . Moreover, if I is a nil ideal and R/I
is an idempotent unit regular, then so is R.

Proof. Since non-zero idempotents are not in J , the first part is obvious. For
the converse, if a /∈ J , then there exist a non-zero idempotent e ∈ R and a unit
u+J with (e+J)(a+J) = (e+J)(u+J). Then we have that ea− eu ∈ J and
hence there exists u1 ∈ R with (u+ ea− eu)u1 = 1. Thus, (eu+ ea− eu)u1 = e
gives that ea = eu−1

1 .
We know that if I is a nil ideal, then idempotents lift modulo I. We can

prove similar to the above proof that R is idempotent unit regular when R/I
is idempotent unit regular. □

Proposition 2.8. The following rings are clean rings with idempotent not
identity and so, idempotent unit regular.

(i) Semi-simple rings,
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(ii) Semi-perfect rings,
(iii) Artinian rings,
(iv) Finite rings.

Proof. (i) A division ring D is unit regular. If R is a semi-simple ring, then
R ∼=

∏n
i=1 Mki

(Di) by Wedderburn-Artin Theorem. If f ∈ Mki
(Di), then it

is equivalent to a diagonal matrix with idempotent entries by the Gaussian
Elimination Method and so, f is unit regular. Thus, every semi-simple ring
is a clean ring with idempotent not identity by [3] and also, idempotent unit
regular.

(ii) If R is semi-perfect, then R/J(R) is semi-simple and idempotents lift
modulo J(R). It follows from the part (i) that R/J(R) is a clean ring with
idempotent not identity. If a /∈ J(R), then we have that a+ J(R) = (e+ u) +
J(R), where e is idempotent not identity and u is unit. Then a = e + u + j,
where j ∈ J , and hence R is a clean ring with idempotent not identity and so,
idempotent unit regular.

(iii) and (iv) can be understood from the fact that finite rings and artinian
rings are semi-perfect. □

Proposition 2.9. Let R be idempotent unit regular. If idempotents lift modulo
J(R), then we have the following:

(i) R[u]/J(R[u]) ∼= R/J(R), where R[x]/⟨xn+1⟩ = R[u] = R +Ru+ · · ·+
Run, where u = x+ ⟨xn+1⟩ such that un+1 = 0.

(ii) Idempotents lift modulo J(R[u]).
(iii) R[x]/⟨xn+1⟩ is idempotent unit regular for n ≥ 1.

Proof. (i) We know that J(R[u]) = J + ⟨u⟩, where ⟨u⟩ is an ideal of R[u]
generated by u and hence, we have that R[u]/J(R[u]) ∼= R/J(R).

(ii) Let e + J(R[u]) = a0 + J(R[u]) be idempotent in R[u]/J(R[u]), where
e = a0 + a1u + · · · + anu

n. Then a20 − a0 ∈ J(R[u]) and so a20 − a0 ∈ J(R).
Since idempotents lift modulo J(R), there exists an idempotent f ∈ R such
that a0 − f ∈ J(R) and then e − f ∈ J(R[u]). Thus, idempotents lift modulo
J(R[u]).

(iii) Since R/J(R) is idempotent unit regular, so is R[u]/J(R[u]) by the part
(i). Then R[u] is idempotent unit regular by the part (ii) and Lemma 2.7. □

Proposition 2.10. R is idempotent unit regular if and only if the formal power
series R[[x]] is idempotent unit regular.

Proof. Let f = a + a1x + a2x
2 + · · · /∈ J(R[[x]]) = J + R[[x]]x. Since R is

an idempotent unit regular, there exist a non-zero idempotent e and a unit u
with ea = eu. Then we have that ef = e(u + a1x + a2x

2 + · · · ) with a unit
u + a1x + a2x

2 + · · · . Conversely, let R[[x]] be an idempotent unit regular
ring and a /∈ J , then a /∈ J(R[[x]]). Thus, there exist a non-zero idempotent
f2 = f = b0 + b1x+ b2x

2 + · · · and a unit u = c0 + c1x+ c2x
2 + · · · such that

fa = fu and hence, b0a = b0c0, where 0 ̸= b0 = b20 and c0 unit, as required. □
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Proposition 2.11. Let R be a ring. Then the following are equivalent:

(i) R is idempotent unit regular.
(ii) For all a /∈ J , uav ∈ iur(R), where u, v ∈ U(R).
(iii) Rop is idempotent unit regular.

Proof. (i)⇒(ii) Since R is idempotent unit regular, for all a /∈ J , ea = eu1,
where e is non-zero idempotent and u1 is unit. Then eu−1ua = eu−1uu1 and
hence ueu−1uav = ueu−1uu1v and then uav ∈ iur(R).

(ii)⇒(i) Let we have a non-zero idempotent e and a unit u1 with euav =
eu1 for a /∈ J . Thus, we hold such that u−1euav = u−1euu−1u1 and hence,
u−1eua = u−1euu−1u1v

−1.
(i)⇔(iii) It follows from Lemma 2.2. □

3. Matrices over idempotent unit regular rings

In this section, we investigate the rings of upper(lower) triangular matrices
and any n× n matrices over idempotent unit regular rings.

Proposition 3.1. Let R and S be any two rings and M be an (R,S)-bimodule.
Let E = [R M

0 S ] be the formal triangular matrix ring. Then R and S are idem-
potent unit regular rings if and only if E is an idempotent unit regular ring.

Proof. Let I = [ 0 M
0 0 ], where we see that I is a nil ideal of E. Then we have

that E/I ∼= T , where T = [R 0
0 S ] and J(T ) =

[
J(R) 0
0 J(S)

]
. We can understand

easily that T is idempotent unit regular. Then E is idempotent unit regular
by Lemma 2.7, too.

Conversely, let E be an idempotent unit regular ring and a ∈ R − J(R).
Then we hold that [ a 0

0 0 ] /∈ J(E) and hence, we have that a non-zero idempotent
[ e1 m
0 e2 ] and a unit [ u1 m1

0 u2
] such that [ e1 m

0 e2 ] [
a 0
0 0 ] = [ e1 m

0 e2 ] [
u1 m1
0 u2

] and we can
see that e1 ̸= 0. Thus, e1a = e1u1, where e1 is a non-zero idempotent and u1

is unit and hence, R is idempotent unit regular. Similarly, we can prove that
so is S. □

Proposition 3.2. Let R and S be any two rings, M and N be (R,S) and
(S,R)-bimodules, respectively. Let Y = [ R M

N S ] be the ring of Morita context

(see [11]). If R and S are idempotent unit regular and Y0 =
[

R M0

N0 S

]
, then so is

the subring Y0 of the Morita context ring Y , where M0 = {x ∈ M : xN ⊆ J(R)}
and N0 = {x ∈ N : xM ⊆ J(S)}.

Proof. Let A = [ a m
n b ] /∈ J(Y0) =

[
J(R) M0

N0 J(S)

]
. First, we can suppose that

a /∈ J(R). Then we have that there exist a non-zero idempotent e and a unit
u such that ea = eu. Thus, we hold that [ e 0

0 0 ] [
a m
n b ] = [ e 0

0 0 ] [
u m
0 −1 ], where

[ u m
0 −1 ]

−1
=

[
u−1 u−1m
0 −1

]
.

Now, let b /∈ J(S). Then we have that there exist a non-zero idempotent e
and a unit u such that eb = eu. Thus, we have that [ 0 0

0 e ] [
a m
n b ] = [ 0 0

0 e ] [
−1 0
n u ],

where [−1 0
n u ]

−1
=

[ −1 0
u−1n u−1

]
. □
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Using the induction on n, we can prove the following lemma.

Lemma 3.3. The following are satisfied:

(i) U = [uij ] ∈ Un(R) is invertible if and only if all the uii are invertible.
(ii) Let E = [eij ] ∈ Un(R) be a nonzero idempotent. Then there exists at

least one i ∈ {1, . . . , n} such that eii is a nonzero idempotent.

Proposition 3.4. R is idempotent unit regular if and only if Un(R) is idem-
potent unit regular.

Proof. Let A = [aij ] /∈ J(Un(R)) and then we have that arr /∈ J(R) for some
r ∈ {1, . . . , n}. Since R is idempotent unit regular, there exist a nonzero
idempotent e and a unit u such that earr = eu. Then eErrA = eErrU , where
U = [uij ] with uii = −1 except i = r, urr = u, ur(r+t) = ar(r+t), where
r + 1 ≤ r + 2 ≤ · · · ≤ r + t ≤ n and otherwise uij = 0. Then U has an inverse
in Un(R) by Lemma 3.3.

Conversely, let Un(R) be idempotent unit regular and a /∈ J(R). Let A =
[aij ], where aii = a for i ∈ {1, . . . , n}, otherwise 0. Then A /∈ J(Un(R)) and
there exist E2 = E ̸= 0 and a unit matrix U = [uij ] such that EA = EU .
Since E = [eij ] ̸= 0, there exists at least one i such that eii ̸= 0 by Lemma 3.3.
Thus, eiia = eiiuii, where 0 ̸= e2ii = eii and uii a unit in R and hence, we are
done. □

Lemma 3.5. Let R be an idempotent unit regular ring. Then M2(R) is also
an idempotent unit regular ring.

Proof. Let A =
[
a b
c d

]
/∈ J(M2(R)) = M2(J(R)). Then we have the following

cases:
Case 1: Let a /∈ J(R). Then there exist 0 ̸= e = e2 and a unit u ∈

Un(R) such that ea = eu. Thus, [ e 0
0 0 ]

[
a b
c d

]
= [ e 0

0 0 ] [
u b
0 1 ], where [ u b

0 1 ]
−1

=[
u−1 −u−1b
0 1

]
.

Case 2: Let b /∈ J(R). Then we have 0 ̸= e = e2 and a unit u ∈ Un(R) with

eb = eu. Thus, [ e 0
0 0 ]

[
a b
c d

]
= [ e 0

0 0 ] [
a u
1 0 ], where [ a u

1 0 ]
−1

=
[

0 1
u−1 −u−1a

]
.

Case 3: Let c /∈ J(R). Similarly, we have that [ 0 0
0 e ]

[
a b
c d

]
= [ 0 0

0 e ] [
0 1
u d ], where

[ 0 1
u d ]

−1
=

[
−u−1d u−1

1 0

]
.

Case 4: Let d /∈ J(R). Then we have that [ 0 0
0 e ]

[
a b
c d

]
= [ 0 0

0 e ] [
1 0
c u ], where

[ 1 0
c u ]

−1
=

[
1 0

−u−1c u−1

]
.

By these cases, M2(R) is idempotent unit regular. □

Lemma 3.6. Let R and Mn−1(R) be idempotent unit regular rings and B =[
A X
Y ann

]
∈ Mn(R), where A ∈ Mn−1(R), X =

[ x1
.
.
.

xn−1

]
and Y = [ y1 ··· yn−1 ]. If

A /∈ J(Mn−1(R)) or ann /∈ J(R), then B is idempotent unit regular.

Proof. Let A /∈ J(Mn−1(R)). Since Mn−1(R) is idempotent unit regular, there
exist a non-zero idempotent E and a unit U such that EA = EU . Thus, we
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have that [E 0
0 0 ]

[
A X
Y ann

]
= [E 0

0 0 ] [
U X
0 1 ] and [ U X

0 1 ]
−1

=
[
U−1 −U−1X
0 1

]
. Now, let

ann /∈ J(R). Then there exist a non-zero idempotent e and a unit u such that
eann = eu and hence, we can write that [ 0 0

0 e ]
[
A X
Y ann

]
= [ 0 0

0 e ]
[
In−1 0
Y u

]
, where[

In−1 0
Y u

]−1
=

[
In−1 0

−U−1Y U−1

]
. □

Lemma 3.7. Let R be idempotent unit regular and B =
[
A X
Y ann

]
∈ Mn(R),

where A ∈ Mn−1(R), X =

[ x1
.
.
.

xn−1

]
=

[ a1n
.
.
.

a(n−1)n

]
and Y = [ y1 ··· y(n−1) ] =

[ an1 ··· an(n−1) ]. If there exists at least one xi /∈ J(R) for i = 1, . . . , n− 1, then
B is idempotent unit regular.

Proof. Since xi /∈ J(R) and R is an idempotent unit regular ring, there ex-
ist a non-zero idempotent e and a unit u with exi = eu. Let E = [est] ∈
Mn(R) such that eii = e and otherwise 0. Then we have a non-zero idem-
potent E and a unit C such that EB = EC, where the i-th row Ri(C) =
[ ai1 ··· ai(n−1) u ] and for 1 ≤ j < i, Rj(C) = [ dj1 ··· djn ] with djj = 1, dj1 =
· · · = dj(j−1) = dj(j+1) = · · · = djn = 0 and in addition; for i < j ≤ n,

Rj(C) = [ dj1 ··· djn ] with dj(j−1) = 1, otherwise 0. In this case, Rn(C
−1) =

[−u−1ai1 ··· −u−1ai(i−1) u−1 −u−1aii ··· −u−1ai(n−1) ] and for 1 ≤ j < i, Rj(C
−1) =

[ dj1 ··· djj ··· djn ] with djj = 1, otherwise 0 and, for i ≤ j < n, Rj(C
−1) =

[ dj1 ··· dj(j−1) djj ··· djn ] with dj(j+1) = 1, otherwise 0. □

Lemma 3.8. Let R be idempotent unit regular and B =
[
A X
Y ann

]
∈ Mn(R),

where A ∈ Mn−1(R), X =

[ x1
.
.
.

xn−1

]
=

[ a1n
.
.
.

a(n−1)n

]
and Y = [ y1 ··· yn−1 ] =

[ an1 ··· an(n−1) ]. If there exists at least one yi /∈ J(R) for i = 1, . . . , n− 1, then
B is idempotent unit regular.

Proof. Since yi /∈ J(R) and R is an idempotent unit regular ring, there exist
a non-zero idempotent e and a unit u with eyi = eu. Let E = [Est] ∈ Mn(R)
such that Enn = e and otherwise 0. Then we have a non-zero idempo-
tent E and a unit C such that EB = EC, where the n-th row Rn(C) =
[ an1 ··· an(i−1) u an(i+1) ··· ann ] for 1 ≤ j < i, Rj(C) = [ bj1 ··· bjn ] with bjj = 1,
bj1 = · · · = bj(j−1) = bj(j+1) = · · · = bjn = 0 and for i ≤ j < n, Rj(C) =
[ bj1 ··· bjn ] with bj(j+1) = 1, otherwise 0. Then

Ri(C
−1) =

[
−u−1an1 · · · −u−1an(i−1) −u−1an(i+1) · · · −u−1ann u−1

]
and for 1 ≤ j < i, Rj(C

−1) = [ dj1 ··· djj ··· djn ] with djj = 1, otherwise 0 and,
for i < j ≤ n, Rj(C

−1) = [ dj1 ··· dj(j−1) djj ··· djn ] with dj(j−1) = 1, otherwise
0. □

Theorem 3.9. If R is idempotent unit regular, then so is Mn(R).
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Proof. Let B = [aij ] =
[
A X
Y ann

]
/∈ J(Mn(R)) = Mn(J(R)), where A = [aij ] ∈

Mn−1(R), X =

[ x1
.
.
.

xn−1

]
=

[ a1n
.
.
.

a(n−1)n

]
and Y = [ y1 ··· yn−1 ] = [ an1 ··· an(n−1) ].

We will use an induction on n. If n = 2, then it is correct by Lemma 3.5. Now,
we suppose that the induction is true for n− 1. Since B /∈ Mn(J(R)), we have
the following cases:

Case 1: If A /∈ Mn−1(J(R)), then B is idempotent unit regular by Lemma
3.6.

Case 2: If ann /∈ J(R), then B is idempotent unit regular by Lemma 3.6.
Case 3: If there exists at least one xi /∈ J(R), then B is idempotent unit

regular by Lemma 3.7.
Case 4: If there exists at least one yi /∈ J(R), then B is idempotent unit

regular by Lemma 3.8.
By these cases, we complete the proof. □

4. On the ring of endomorphisms of a module in a class X

In this section, we will study when endomorphism ring of a module is an
idempotent unit regular ring.

Theorem 4.1. Let M be any left (or right) R-module. Then T ′
α = {(K,β) :

α(K) ⊆ K,α|K − β is unit and β2 = β ∈ End(K)} has a maximal element
(W ′

α, η
′) by the ordering (K ′, β′) ≤ (K,β) if and only if K ′ ⊆ K and β′ = β|K′ ,

where α ∈ End(M). If W ′
α is a direct summand of M for all α ∈ End(M) and

every submodule of M that is isomorphic to a summand is a summand, then
End(M) is a clean ring.

Proof. It follows from the proof of Lemma 4 in [4]. □

Let M be any left (or right) R-module, α ∈ End(M)− J(End(M)) and let
there exists a submodule Nα such that α(Nα) ⊆ Nα and α|Nα

−e is unit, where
1 ̸= e = e2 ∈ End(Nα) is idempotent. Thus, using Zorn’s Lemma we can say
that Tα = {(K,β) : Nα ≤ K,α(K) ⊆ K,α|K − β is unit, β2 = β ∈ End(K)
and β|Nα = e} has a maximal element (Wα, η) such that η|Nα = e ̸= 1 by the
ordering on Tα which is (K ′, β′) ≤ (K,β) if and only if K ′ ⊆ K and β′ = β|K′ .

Let’s have the following conditions in the class X:
(Wα) Wα (where (Wα, η) such that η ̸= 1 is a maximal element of Tα above)

is a direct summand of the module M in X.
(C2) Every submodule of a module in the class X that is isomorphic to a

direct summand is a direct summand.
The proof of the following theorem is the same as the proof of Lemma 4 in

[4]. But we give again some necessary parts.

Theorem 4.2. Let M be any module in a class X. If there exists a submodule
Nα such that α(Nα) ⊆ Nα and α|Nα

− e is unit, where 1 ̸= e = e2 ∈ End(Nα)
and in addition, the conditions (Wα) and (C2) (which are described above) are
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satisfied for all α ∈ End(M)− J(End(M)), then End(M) is a clean ring with
idempotent not identity and hence an idempotent unit regular ring.

Proof. Let α ∈ End(M)− J(End(M)). Since Wα is a direct summand of M ,
we have a submodule Kα such that M = Wα ⊕Kα. Let πWα

and πKα
be the

projections of M onto Wα and Kα and ϕ = πKα
α|Kα

∈ End(Kα).
Claim 2: Suppose X ≤ Kα satisfies ϕ(X) ⊆ X and ϕ−ϵ is a unit of End(X)

for an idempotent ϵ. Then X = 0. Claim 2 is proved in Lemma 4 in [4].
Now, take X = Ker(ϕ) and ϵ = 1X . By Claim 2 we have that X = 0 and

hence ϕ is monic. Thus, ϕ(Kα) is a direct summand by the condition (C2).
Then Kα = Y ⊕ ϕ(Kα) and hence ϕ(Kα) = ϕ(Y )⊕ ϕ2(Kα) which gives Kα =
Y ⊕ϕ(Y )⊕ϕ2(Kα). Then we have {Y, ϕ(Y ), ϕ2(Y ), . . .} which is an independent
family of submodules ofKα. Let V = ⊕n∈Nϕ

n(Y ) and so, ϕ(V ) ⊆ V . Following

an argument of Ó Searcóid in [17] if we take as λ(y) = y, λ(ϕ(y)) = ϕ2(y) −
y, . . . , λ(ϕ2n(y)) = ϕ2n(y), λ(ϕ2n+1(y)) = ϕ2n+2(y) − ϕ2n(y), . . .; then λ is
idempotent on V . Then (ϕ|V −λ)(y) = ϕ(y)−y, (ϕ|V −λ)(ϕ(y)) = y, . . . , (α|V −
λ)(ϕ2n(y)) = ϕ2n+1(y) − ϕ2n(y), (ϕ|V − λ)(ϕ2n+1(y)) = ϕ2n(y), . . . which has
an inverse ϕ|V − λ + I since (ϕ|V − λ)2 = I − ϕ|V + λ. If we take X = V
and ϵ = λ in Claim 2, then V = 0 and then we have that Kα = ϕ(Kα), that
is, ϕ ∈ End(Kα) is unit. Taking X = Kα and ϵ = 0 in Claim 2, we can find
that Kα = 0 and so Wα = M . Then α is a clean element with idempotent
not identity and hence it is idempotent unit regular. Therefore, End(M) is an
idempotent unit regular ring. □

Theorem 4.3. Let X be a class of semi-simple modules. If M is in X, then
End(M) is a clean ring with idempotent not identity and hence it is an idem-
potent unit regular ring .

Proof. Let 0 ̸= α ∈ End(M). Then there exists a simple submodule Rx of M
such that α(x) ̸= 0. Thus, we have that either Rx = Rα(x) or Rx⊕Rα(x). If
Rx = Rα(x), then we can take as N = Rx and e2 = e = 0 ̸= 1 in Theorem 4.2.
Thus, α|N − e is unit and hence, α is idempotent unit regular by Theorem 4.2.

Now, let αn(x) ∈ N = Rx ⊕ Rα(x) ⊕ · · · ⊕ Rαn−1(x), where n ≥ 2. Then
α|N is on finitely many direct sum of simple modules and hence it is isomorphic
to ring of matrices over a division ring which is equivalent to a diagonal matrix
with idempotent entries by Theorem 2.7 in [12]. Therefore, it is unit regular
and hence it is written as α|N − e is unit and e2 = e ̸= 1 by [3].

Now, let N = Rx⊕Rα(x)⊕ · · · ⊕Rαn(x)⊕ · · · . Following an argument of

Ó Searcóid in [17] if we take as e(x) = x, e(α(x)) = α2(x)−x, . . . , e(α2n(x)) =
α2n(x), e(α2n+1(x)) = α2n+2(x) − α2n(x), . . .; then e is idempotent on N .
Then (α|N − e)(x) = α(x) − x, (α|N − e)(α(x)) = x, . . . , (α|N − e)(α2n(x)) =
α2n+1(x) − α2n(x), (α|N − e)(α2n+1(x)) = α2n(x), . . . which has an inverse
α|N − e+ I since (α|N − e)2 = I − α|N + e. By Theorem 4.2 we are done. □

The following result follows directly from the previous theorem.
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Corollary 4.4. If M is a vector space over a division ring D, then End(M)
is a clean ring with idempotent not identity and hence it is an idempotent unit
regular ring.

Using [16] we can give the following proposition.

Proposition 4.5. (i) Let R = Mn(D) be the matrix ring over a division ring
D, where n > 0 is an integer and let FR be a free module. Then End(FR) is
idempotent unit regular.

(ii) Let R = Mn(D) be the matrix ring over a division ring D, where n > 0
is an integer and MR is idempotent unit regular.

(iii) Let R be a semi-simple artinian ring and MR be a module. Then
End(MR) is idempotent unit regular.

(iv) For any projective R-module PR over a right perfect ring R, the endo-
morphism ring End(PR) is idempotent unit regular.

Theorem 4.6. If M is a nonsingular injective module such that S = End(M)
is regular, then S is a clean ring with idempotent not identity and hence it is
idempotent unit regular. In addition, if M is a continuous or discrete module,
then S is idempotent unit regular.

Proof. Let 0 ̸= α ∈ S. Since S is regular, we have that S = rS(α)⊕K, where
rS(α) = (1 − e)S, K = eS and e is idempotent. Put eαe = ϕ and eSe = S1.
If rS1(ϕ) = 0, then ϕ is 1 − 1 since S1 is regular. Thus, eM = Y ⊕ ϕ(eM).

Following an argument of Ó Searcóid in [17] the same as in Theorem 4.2,
we can obtain that a submodule V = ⊕n∈Nϕ

n(Y ) and an idempotent λ not
identity such that ϕ|V − λ is unit. By the Peirce Decomposition we have that

α =
[

eαe 0
(1−e)αe 0

]
which implies that α|V is a clean element with idempotent not

identity. Then we can take as Nα = V in Theorem 4.2.
Now, let 0 ̸= x ∈ rS1

(ϕ). Since α = eαe+(1−e)αe, αx ∈ (1−e)S and hence
we can get that X = αx(M) ⊕ x(M). Let g : X → X be a morphism such
that g(x) = g(αx) = x. Then α|X − g is unit, where g ̸= 1 is idempotent. So
we can take as Nα = X in Theorem 4.2. Thus, a nonsingular injective module
satisfies the conditions (Wα) and (C2) by the proof of Lemma 4 in [4] and so,
S is idempotent unit regular by Theorem 4.2.

If M is continuous, then S/J(S) = T1 × T2 by Theorem 3.11 and Corollary
3.13 in [13], where T1 is a regular (so nonsingular), left self injective ring and
T2 is a reduced regular ring. Then T1 is idempotent unit regular. Since T2 is a
reduced regular ring, it is unit regular and hence it is idempotent unit regular.
Thus, S/J(S) is idempotent unit regular, too. Since idempotents lift modulo
J(S) by Proposition 3.5 and Lemma 3.7 in [13], S is idempotent unit regular.
If M is discrete, then S/J(S) is left continuous by Theorem 2.3 in [2]. Then
it follows from the above discussion that S/J(S) is idempotent unit regular.
Thus, S is idempotent unit regular by Lemma 5.3 and Theorem 5.4 in [13]. □

Theorem 4.7. Let M be a quasi-injective right R-module and S = EndR(M).
If (α+ 1)S is a directly finite, then α ∈ S − J(S) is idempotent unit regular.
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Proof. By Theorem 7 in [5] there exist an idempotent e and a unit u such that
α+1 = e+ u, where (1− (α+1))S ∩ (1− e)S ⊆ J(S). Thus, e ̸= 0 because of
α ∈ S − J(S) and so eα = eu. □

Corollary 4.8. Let R be a regular right self injective ring. If (α + 1)S is
directly finite, then α ∈ S − J(S) is idempotent unit regular.

Proof. It follows directly from the proof of Theorem 7 in [5] and Theorem
4.7. □

Acknowledgement. I would like to thank the referee for his (or her) very
important contribution to the development of this article.

References

[1] R. M. S. Alfaqi, On a special case of clean rings, Thesis (Master), Bolu Abant Izzet
Baysal University, 2021. https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp

[2] M. H. Ali and J. M. Zelmanowitz, Discrete implies continuous, J. Algebra 183 (1996),

no. 1, 186–192. https://doi.org/10.1006/jabr.1996.0213
[3] V. P. Camillo and D. Khurana, A characterization of unit regular rings, Comm. Algebra

29 (2001), no. 5, 2293–2295. https://doi.org/10.1081/AGB-100002185
[4] V. P. Camillo, D. Khurana, T. Y. Lam, W. K. Nicholson, and Y. Zhou, A short proof

that continuous modules are clean, in Contemporary ring theory 2011, 165–169, World

Sci. Publ., Hackensack, NJ, 2012. https://doi.org/10.1142/9789814397681_0015
[5] H. Chen, Extensions of unit-regular rings, Comm. Algebra 32 (2004), no. 6, 2359–2364.

https://doi.org/10.1081/AGB-120037225

[6] H. Chen, On strongly J-clean rings, Comm. Algebra 38 (2010), no. 10, 3790–3804.
https://doi.org/10.1080/00927870903286835

[7] H. Chen, On uniquely clean rings, Comm. Algebra 39 (2011), no. 1, 189–198. https:

//doi.org/10.1080/00927870903451959

[8] A. J. Diesl, Nil clean rings, J. Algebra 383 (2013), 197–211. https://doi.org/10.1016/

j.jalgebra.2013.02.020

[9] G. Ehrlich, Unit-regular rings, Portugal. Math. 27 (1968), 209–212.
[10] K. R. Goodearl, von Neumann Regular Rings, second edition, Robert E. Krieger Pub-

lishing Co., Inc., Malabar, FL, 1991.
[11] N. A. Immormino, Clean rings & clean group rings, Thesis (Ph.D.), Bowling Green

State University, 2013.

[12] T.-M. Lok and K. P. Shum, On matrix rings over unit-regular rings, Beiträge Algebra
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