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VOLUME DENSITY ASYMPTOTICS OF

CENTRAL HARMONIC SPACES

Peter B. Gilkey and JeongHyeong Park

Abstract. We show the asymptotics of the volume density function in

the class of central harmonic manifolds can be specified arbitrarily and
do not determine the geometry.

1. Introduction

Let Mψ := (M,ψ2g) be the conformal deformation of a connected Rie-
mannian manifold M := (M, g) of dimension m ≥ 4, where ψ is a smooth
positive function on M . If P is a point of M , let rM,P (Q) be the geodesic
distance from P to Q, let ιM,P be the injectivity radius at P , let BM,P :=
{Q ∈M : rM,P (Q) < ιM,P } be the open ball about P of radius ιM,P , let e⃗ =
(e1, . . . , em) be an orthonormal basis for TPM , and let x⃗ = (x1, . . . , xm) :=
expP (x

1e1+ · · ·+xmem) be geodesic coordinates centered at P . We then have
that

rM,P (x⃗) = ∥x⃗∥ =
{
(x1)2 + · · ·+ (xm)2

}1/2
.

Let dvolM be the Riemannian measure on M, let gij := g(∂xi , ∂xj ), and let
dx⃗ = dx1 · · · dxm be the Euclidean measure on TPM . Then

dvolM = Θ̃M,P dx
1 · · · dxm, where Θ̃M,P := det(gij)

1/2,

where Θ̃M,P is the volume density function. Let Sm−1
P := {θ⃗ ∈ TPM : ∥θ⃗∥ = 1}

be the unit sphere in TPM and let Sm−1
P := (Sm−1

P , gS), where gS is the metric

on Sm−1
P induced from Euclidean metric on TPM defined by g. Introduce

geodesic polar coordinates (r, θ⃗) on BM,P − {P} to express

x⃗ = r(x⃗)θ⃗(x⃗) for 0 < r(x⃗) := ∥x⃗∥ < ιM,P and θ⃗(x⃗) = ∥x⃗∥−1x⃗ ∈ Sm−1
P .

Note that θ⃗(x⃗) is not defined when x = 0. We may also express

dvolM = ΘM,P dr dvolSm−1
P

, where ΘM,P := rm−1Θ̃M,P .
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We say that a smooth function f , which is defined near P , is radial if there
exists a smooth function η1 of one real variable so f(x⃗) = η1(∥x⃗∥); f is smooth
at P if and only if we can write f(x⃗) = η2(∥x⃗∥2) or, equivalently, η1 is an even

function of ∥x⃗∥. We say that M is central harmonic at P if Θ̃M,P is a radial
function on BM,P . We say that M is a harmonic space if M is central harmonic
about every point.

There is a vast literature on this subject; we refer to [2, 3, 5, 12–14] and
the references cited therein for further details. Note that if M is a harmonic
space, then we can rescale the metric to replace g by c2g for any c > 0 to
obtain another harmonic space Mc := (M, c2g). Similarly, we shall show in
Corollary 2.2 that if M is central harmonic at P and if ψ is a smooth positive
radial function, then the radial conformal deformation Mψ := (M,ψ2g) is again
central harmonic at P .

1.1. The asymptotic expansion of the volume density function

We can expand the volume density function in geodesic polar coordinates in
a formal power-series

Θ̃M,P (r, θ⃗) ∼ 1 +

∞∑
ν=2

Hν(M, P, θ⃗)rν .

If ξ ∈ TPM , let J (ξ) := J0(ξ) be the Jacobi operator and Jk(ξ) := ∇k
ξJ (ξ);

Jk(ξ) is a self-adjoint endomorphism of TPM which is characterized by the
relationship:

g(Jk(ξ)ξ1, ξ2) = (∇kR)(ξ1, ξ, ξ, ξ2; ξ, . . . , ξ) ;

We refer to Gray [10] for the computation of Hν(M, P, θ⃗) for 2 ≤ ν ≤ 6 and to

Gilkey and Park [7] for the computation of Hν(M, P, θ⃗) when ν = 7, 8.

Theorem 1.1. Let P be a point of a Riemannian manifold M and let θ⃗ ∈ SPM.

(1) H2(M, P, θ⃗) = −Tr{J (θ⃗)}
6 .

(2) H3(M, P, θ⃗) = −Tr{J1(θ⃗)}
12 .

(3) H4(M, P, θ⃗) = Tr{J (θ⃗)}2

72 − Tr{J (θ⃗)2}
180 − Tr{J2(θ⃗)}

40 .

(4) H5(M, P, θ⃗) = Tr{J (θ⃗)}Tr{J1(θ⃗)}
72 − Tr{J (θ⃗)J1(θ⃗)}

180 − Tr{J3(θ⃗)}
180 .

(5) H6(M, P, θ⃗) = − Tr{J (θ⃗)}3

1296 + Tr{J (θ⃗)}Tr{J (θ⃗)2}
1080 + Tr{J (θ⃗)}Tr{J2(θ⃗)}

240

− Tr{J (θ⃗)3}
2835 − Tr{J (θ⃗)J2(θ⃗)}

630 + Tr{J1(θ⃗)}2

288

− Tr{J1(θ⃗)
2}

672 − Tr{J4(θ⃗)}
1008 .

(6) H7(M, P, θ⃗) = Tr{J (θ⃗)}Tr{J (θ⃗)J1(θ⃗)}
1080 − Tr{J (θ⃗)}2 Tr{J1(θ⃗)}

864 − Tr{J5(θ⃗)}
6720

+ Tr{J (θ⃗)}Tr{J3(θ⃗)}
1080 + Tr{J (θ⃗)2}Tr{J1(θ⃗)}

2160 − Tr{J (θ⃗)2J1(θ⃗)}
1890

− Tr{J (θ⃗)J3(θ⃗)}
3024 + Tr{J1(θ⃗)}Tr{J2(θ⃗)}

480 − Tr{J1(θ⃗)J2(θ⃗)}
1120 .
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(7) H8(M, P, θ⃗) = Tr{J (θ⃗)}4

31104 − Tr{J (θ⃗)}2 Tr{J (θ⃗)2}
12960 − Tr{J (θ⃗)}2 Tr{J2(θ⃗)}

2880

+ Tr{J (θ⃗)}Tr{J (θ⃗)3}
17010 + Tr{J (θ⃗)}Tr{J (θ⃗)J2(θ⃗)}

3780 − Tr{J6(θ⃗)}
51840

− Tr{J (θ⃗)}Tr{J1(θ⃗)}2

1728 + Tr{J (θ⃗)}Tr{J1(θ⃗)
2}

4032

− Tr{J2(θ⃗)
2}

7200 + Tr{J (θ⃗)}Tr{J4(θ⃗)}
6048 + Tr{J (θ⃗)2}Tr{J2(θ⃗)}

7200

+ Tr{J (θ⃗)2}2

64800 − Tr{J (θ⃗)4}
37800 − 17Tr{J (θ⃗)2J2(θ⃗)}

113400

+ Tr{J (θ⃗)J1(θ⃗)}Tr{J1(θ⃗)}
2160 − 5Tr{J (θ⃗)J1(θ⃗)

2}
18144

− Tr{J (θ⃗)J4(θ⃗)}
18144 + Tr{J1(θ⃗)}Tr{J3(θ⃗)}

2160 − Tr{J1(θ⃗)J3(θ⃗)}
5184

+ Tr{J2(θ⃗)}2

3200 .

If M is central harmonic at P , then Hν(M, P, θ⃗) is independent of θ⃗; we set

Hν(M, P ) := Hν(M, P, θ⃗) for any θ⃗ ∈ Sm−1
P . Since Θ̃M,P (x⃗) = Θ̃M,P (−x⃗), we

may conclude that Hν(M, P ) = 0 if ν is odd. If M is a harmonic space, then
one can show that the value is independent of P and we set Hν(M) = Hν(M, P )
for any P .

1.2. Specifying the volume density function

In Section 2, we will use an argument shown to us by Professor J. Álvarez-
López [1] to establish the following result.

Theorem 1.2.

(1) Let M be the germ of a Riemannian manifold which is central harmonic
at P . Let Ξ be the germ of a smooth positive function of one real
variable. There exists the germ of a smooth positive radial function ψ
defined on M near P so that Θ̃Mψ,P = Ξ(rMψ ).

(2) If Ξ ≡ 1, then ψ can be defined on all of BM,P .
(3) If M and Ξ are real analytic, then ψ is real analytic.

1.3. Specifying the volume density asymptotics in even dimensions

Let WM be the Weyl curvature operator. We refer to Section 3.3 for more
details. Let Qi be points of Riemannian manifolds Mi. We say that (M1, Q1)
is Weyl curvature operator isomorphic to (M2, Q2) if there exists a linear iso-
morphism Φ from TQ1

(M1) to TQ2
(M2) so that WM1

(Q1) = Φ∗WM2
(Q2). We

say that M1 is nowhere Weyl curvature operator isomorphic to M2 if (M1, Q1)
is not Weyl curvature operator isomorphic to (M2, Q2) for any points Q1 ∈M1

and Q2 ∈ M2. This is a conformal condition since WMψ = WM. We introduce
the following spaces for certain values of (i,m); they are not defined for all
values of (i,m).

Definition 1.3. Let M1,m be the complex projective space CPk if m = 2k,

let M2,m be the quaternionic projective space HPk if m = 4k, and let M3,m be
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the Cayley projective plane OP2 if m = 16; we refer to Section 1.6 for details.

Let M4,m := C̃P
k
, M5,m := H̃P

k
, and M6,m := ÕP

2
be the negative curvature

duals in the appropriate dimensions; we refer to Section 1.7 for further details.
These are rank 1 symmetric spaces. Note that M2,m and M5,m are not defined
unless m = 4k, and M3,m and M6,m are not defined if m ̸= 16. Let M7,m = Rm
be the flat Euclidean space. Let Pi,m ∈ Mi,m; the particular point in question
is irrelevant as Mi,m is a homogeneous space. Let Qi,m be arbitrary points of
Mi,m. Let ψi,m be a positive function on Mi,m with ψi,m(Pi,m) = 1 which is
radial on BMi,m,Pi,m and which satisfies ψi,m(Qi,m) = 1 if ri,m(Qi,m) ≥ εi,m
for some 0 < εi,m < 1

2 ιi,m; if ιi,m = ∞ this means εi,m is finite. Finally, let

H⃗ := {H0,H1, . . . } be a sequence of real numbers with H0 = 1 and Hν = 0 for
ν odd.

The asymptotic coefficients Hν have been used to obtain constraints on
the possible geometries of harmonic spaces. Examining H2(M, P ) implies, for
example, that M is Einstein at P . However, the following result, which we will
establish in Section 3, shows that they do not determine the local geometry of
a central harmonic manifold.

Theorem 1.4. Adopt the notation of Definition 1.3. Let m ≥ 4 be even. There
exist radial functions ψi,m,H⃗ on Mi,m so Mi,m,H⃗ := (Mi,m, ψ

2
i,m,H⃗

gi,m) satisfies:

(1) If i ≤ 3, Mi,m,H⃗ is compact.

(2) If 4 ≤ i, Mi,m,H⃗ is diffeomorphic to Rm and geodesically complete.

(3) Mi,m,H⃗ is central harmonic at Pi,m.

(4) Hν(Mi,m,H⃗, Pi,m) = Hν for all ν.

(5) If i ̸= j, then Mi,m,H⃗ is nowhere Weyl curvature operator isomorphic

to Mj,m,H⃗; the local geometries of Mi,m,H⃗ and Mj,m,H⃗ are different ev-

erywhere.

1.4. Specifying the volume density asymptotics in odd dimensions

Any odd dimensional rank 1 symmetric space is conformally flat and thus
the rank 1 symmetric spaces can not be used to extend Theorem 1.4 to odd di-
mensions. Damek–Ricci spaces are non-symmetric Hadamard manifolds which
are harmonic, but they do not exist in all dimensions and thus are not adapted
to our purposes. Instead, we use Theorem 1.2 to construct odd dimensional
examples as follows.

Definition 1.5. If m ≥ 5 is odd, let Mi,m−1 = (Mi,m−1, gi,m−1) be the even
dimensional Riemannian symmetric space which was specified in Definition 1.3.
Let Bi,m−1 be a small open geodesic ball about the basepoint of Mi,m−1.
By Theorem 1.2, we can choose a radial warping function ϕi,m−1 on Bi,m−1

so that the Riemannian manifold Ni,m−1 := (Bi,m−1, ϕ
2
i,m−1gi,m−1) satisfies

Θ̃Ni,m−1,0 ≡ 1. Let dt2 be the Euclidean metric on R. Give Bi,m−1×R the prod-

uct metric gi,m := ϕ2i,m−1gi,m−1 ⊕ dt2 and let Bi,m be a small geodesic ball in



VOLUME DENSITY ASYMPTOTICS 1543

the resulting Riemannian manifold. Set Mi,m := (Bi,m, gi,m). Since the Weyl
conformal curvature operator is a conformal invariant, WNi,m−1

= WMi,m−1
.

Since we are considering a product metric, we have

(1.1)
Θ̃Mi,m = Θ̃Ni,m−1

· Θ̃R1 ≡ 1, and
WMi,m = WNi,m−1 ⊕WR1 = WMi,m−1 ⊕ 0.

Theorem 1.6. Adopt the notation of Definitions 1.3 and 1.5. Let m ≥ 5 be
odd. Then there exist radial functions ψi,m,H⃗ on Mi,m so

Mi,m,H⃗ := (Mi,m, ψ
2
i,m,H⃗

gi,m)

satisfies:

(1) Mi,m,H⃗ is geodesically complete.

(2) Mi,m,H⃗ is central harmonic at 0 and Hν(Mi,m,H⃗, 0) = Hν for all ν.

(3) If i ̸= j, then Mi,m,H⃗ is nowhere Weyl curvature operator isomorphic

to Mj,m,H⃗; the local geometries of Mi,m,H⃗ and Mj,m,H⃗ are different ev-

erywhere.

1.5. A 5 dimensional example

By Lemma 2.1, any radial conformal deformation of a central harmonic space
is again central harmonic. There are, however, central harmonic spaces which
do not arise in this fashion. We will establish the following result in Section 2.4.

Lemma 1.7. M1,5 a central harmonic space which is nowhere Weyl curvature
isomorphic to a conformal deformation of a harmonic space.

1.6. The rank 1 symmetric spaces with positive curvature

Let Sm be the unit sphere in Rm+1, let CPk be the complex projective
space, let HPk be the quaternionic projective space, and let OP2 be the Cayley
projective plane. We give these spaces the standard metrics normalized so:

(1.2)

M dimension diameter ΘM,P

Sm m π sin(r)m−1

CPk 2k 1
2π sin(r)2k−1 cos(r)

HPk 4k 1
2π sin(r)4k−1 cos3(r)

OP2 16 1
2π sin(r)15 cos7(r)

The metric on Sm is the standard metric inherited from Euclidean space, the
metric on CPk is the suitably normalized Fubini-Study metric, and so forth.
The rank 1 symmetric spaces in positive curvature are compact 2 point homo-
geneous spaces with BM,P =M − CM,P where CM,P is the cut-locus:

CSm,P = {−P}, CCPk,P = CPk−1, CHPk,P = HPk−1, COP2,P = OP1 = S8.
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1.7. The rank 1 symmetric spaces of negative curvature

There are negative curvature duals of the spaces discussed in Section 1.6 that

we shall denote by S̃m (hyperbolic space), C̃Pk (complex hyperbolic space), H̃P
k

(quaternionic hyperbolic space), and ÕP
2
(Cayley hyperbolic plane). These

are the rank 1 symmetric spaces of negative curvature; they are all 2-point
homogeneous spaces and are geodesically complete. The curvature tensor of
these spaces is obtained by reversing the sign of the curvature tensor of the
corresponding positive curvature example. We note that any simply-connected
2-point homogeneous space is either flat or a rank 1 symmetric space.

If M is a rank 1 symmetric space with negative curvature, then the expo-
nential map is a global diffeomorphism so the underlying topology of all these
spaces is Euclidean space; the cut locus is empty. We adopt the same nor-
malizations as those used to normalize the positive curvature examples. We
replace sin by sinh and cos by cosh in Equation (1.2) to obtain:

M dimension ΘM,P

S̃m m sinh(r)m−1

C̃P
k

2k sinh(r)2k−1 cosh(r)

H̃P
k

4k sinh(r)4k−1 cosh3(r)

ÕP
2

16 sinh(r)15 cosh7(r)

1.8. Outline of the paper

In Section 2, we construct radial conformal deformations of any central har-

monic space realizing any sequence of asymptotic coefficients H⃗ with H0 = 1
and Hν = 0 if ν is odd. We also show that a radial conformal deformation of
a central harmonic space is again central harmonic. In Section 3, we use the
Weyl conformal curvature to construct conformal invariants of the curvature
tensor to distinguish the spaces Mi,m,H⃗ of Theorems 1.4 and 1.6.

2. Prescribing the volume density function: The proof of
Theorem 1.2

Let P be a point of a central harmonic Riemannian manifold M. In Sec-
tion 2.1, we show that a radial conformal deformation of M is again central
harmonic and we determine the resulting volume density function. In Sec-
tion 2.2, we solve the ODE relating the volume density function of a radial
conformal deformation to the original volume density function; we use this so-
lution in Section 2.3 to complete the proof of Theorem 1.2. In Section 2.4, we
establish Lemma 1.7 and determine the warping function ϕ1,4 on CP2 to ensure

Θ̃ ≡ 1.
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2.1. Radial conformal deformations

Let η(r) be a smooth odd function of a single variable with η̇(0) = 1 and
η̇ > 0. Set

ηM := η ◦ rM, ψM := η̇ ◦ rM, gη := ψ2
Mg, and Mη := (BM,P , gη).

We restrict to BM,P to ensure r2M is smooth. Consequently, since η̇ is an even
function of rM, ψM is a smooth radial function on BM,P and Mη is a smooth
radial conformal deformation of M. We use an argument introduced previously
in Gilkey and Park [8] to establish the following result.

Lemma 2.1. Assume that M is central harmonic at P .

(1) rMη = ηM.

(2) Θ̃Mη = η1−mM rm−1
M ψm−1

M Θ̃M.
(3) Mη is central harmonic at P .

Proof. Introduce a system of local coordinates θ⃗ = (θ1, . . . , θm−1) on Sm−1 and

let hij(r, θ⃗) := g(∂θi , ∂θj ). We have dηM = d(η ◦ rM) = {η̇ ◦ rM}drM = ψMdrM
so:

(2.1)

g = drM ⊗ drM + hij(r, θ⃗)dθ
i ⊗ dθj ,

gη = ψMdrM ⊗ ψMdrM + (ψM)
2hij(r, θ⃗)dθ

i ⊗ dθj

= dηM ⊗ dηM + (ψM)
2hij(r, θ⃗)dθ

i ⊗ dθj .

Since η̇ > 0, the map Q → (ηM(Q), θ⃗(Q)) introduces new coordinates which,
by Equation (2.1), are geodesic polar coordinates centered at P for the metric
gη. We have reparametrized the radial parameter to ensure it has unit length
and left the angular parameter unchanged. Assertion (1) now follows.

Let ε(θ⃗) be defined by the identity ε(θ⃗) dvolSm−1(θ⃗) = dθ1 · · · dθm−1; ε is
independent of the radial parameter. We may express

(2.2)
dvolM = det(hij)

1/2drMdθ
1 · · · dθm−1 = det(hij)

1/2ε(θ⃗)drM dvolSm−1 ,

ΘM = det(hij)
1/2ε(θ⃗), and Θ̃M = r1−mM det(hij)

1/2ε(θ⃗).

The angular variable θ⃗ is the same for both systems of geodesic polar coor-
dinates. We use Equation (2.1) and Equation (2.2) to complete the proof by
showing:

Θ̃Mη = η1−mM ψm−1
M det(hij(rM, θ⃗))

1/2ε(θ⃗) = η1−mM rm−1
M ψm−1

M Θ̃M. □

We have chosen to start with η, which is the new radial distance function.
However, if we start with a deformation Ψ which is radial on BM,P , then we
have Ψ(x⃗) = ψ(∥x⃗∥) for some smooth even function ψ of 1-variable if rM < ιM.
We set

ηψ(r) :=

∫ r

t=0

ψ(t)dt.
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We then have Ψ = ψM on BM,P so the two formalisms are equivalent. The
following observation, which proves Assertion (3) of Theorem 1.4, is now im-
mediate; we also refer to the discussion in [9] for a different treatment.

Corollary 2.2. Let M be a Riemannian manifold which is central harmonic
at P . Let Ψ be a smooth positive function on M which is radial on BM,P . Then
the conformal deformation (M,Ψ2g) is central harmonic at P .

2.2. Solving an ODE

The proof of the following result was shown to us by J. Álvarez-López [1].

Lemma 2.3. Let fi(r) be positive smooth even functions of one variable which
are defined for 0 ≤ r ≤ ε and which satisfy fi(0) = 1. Then there exist
0 < δ ≤ ε and a smooth odd function η which is defined for 0 ≤ r ≤ δ so that
η̇(0) = 1 and so that

(2.3) f1(η(r)) = η(r)1−mrm−1η̇(r)m−1f2(r) for 0 ≤ r ≤ δ.

Proof. Set ϕi := f
1

1−m
i . Then Equation (2.3) is equivalent to

(2.4)
1

ϕ1(η(r))
=

η̇(r)r

η(r)ϕ2(r)
, i.e.,

ϕ2(r)

r
=
η̇(r)ϕ1(η(r))

η(r)
.

Multiplying Equation (2.4) by dr and noting η̇dr = dη yields the equivalent
relation

(2.5)
ϕ2(r)dr

r
=
ϕ1(η)dη

η
, i.e.,

∫
ϕ2(r)dr

r
=

∫
ϕ1(η)dη

η
+ C.

Because ϕi are even functions with ϕi(0) = 1, we may express ϕi(r) = 1 +
r2Φi(r) to rewrite Equation (2.5) in the form

(2.6)

∫
(1 + r2Φ2(r))dr

r
=

∫
(1 + η2Φ1(η))dη

η
+ C, i.e.,

ln |r|+
∫
rΦ2(r)dr = ln(|η|) +

∫
ηΦ1(η)dη + C.

We set

αi(r) :=

∫ r

t=0

tΦi(t)dt and η(r) = rβ(r).

We then have that αi is a smooth even function with αi(0) = 0. We may
rewrite Equation (2.6) in the form

(2.7) ln(|r|) + α2(r) = ln(|r|) + ln(|β(r)|) + α1(rβ(r)).

Equation (2.7) is then equivalent to the relation G(r, β(r)) = 0, where

(2.8) G(r, β) := α2(r)− ln(|β|)− α1(rβ).

Equation (2.8) is solved when r = 0 and β = 1. We compute

∂βG(r, β)

∣∣∣∣
r=0,β=1

=

{
− 1

β
− rα̇1(rβ)

}∣∣∣∣
r=0,β=1

̸= 0.
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Thus we may use the implicit function theorem to solve Equation (2.8) near
the point (r = 0, β = 1); the solution is unique and a smooth function of r;
if the data is real analytic, then β is real analytic. Since the functions αi are
even functions of r, it follows β is an even function of r and hence η is an odd
function of r with η̇(0) = 1. □

2.3. The proof of Theorem 1.2

Assertions (1) and (3) of Theorem 1.2 follow immediately from Lemma 2.3.
If Ξ = 1, it is not necessary to localize. If we set f1 ≡ 1 in Lemma 2.3, then
Φ1 ≡ 0, α1 ≡ 0, and Equation (2.7) simplifies to become β(r) = eα2(r); since
α2(0) = 0, β(0) = 1. Thus we can find ψ which is defined on all of BM,P so

that Θ̃Mψ,0 ≡ 1; it is not necessary to invoke the implicit function theorem and
work locally. □

2.4. The proof of Lemma 1.7

We have by definition that M1,5 is a small geodesic ball in N1,4 × R. Equa-
tion (1.1) shows M1,5 is central harmonic about the origin and that WM1,5 is
nowhere vanishing. Nikolayevsky [12] has shown that every harmonic space of
dimension 5 is a space form and hence conformally flat. Thus M1,5 is nowhere
Weyl curvature isomorphic to a radial conformal deformation of a harmonic
space; consequently not all central harmonic spaces arise as radial conformal
deformations of harmonic spaces. □

N1,4 is defined by a conformal radial deformation ϕ1,4 of the Fubini-Study
metric BCP2,P which is described as follows.

Lemma 2.4. Let M = CP2 and let

ϕ1,4(r) := 3
3
4 e

π
2
√

3 sin(r) exp

(
−1

2

√
3 tan−1

(
2 cos

2
3 (r) + 1√
3

))

·
(√

1− cos
2
3 (r) 3

√
cos(r)

(
cos

2
3 (r) + cos

4
3 (r) + 1

)5/4)−1

for r < π
2 . Then ϕ1,4(0) = 1 and Θ̃Mϕ1,4 = 1 on BCP2,P .

Proof. By Equation (1.2), r3Θ̃CP2 = ΘCP2 = sin3(r) cos(r). Consequently,
Equation (2.3) becomes 1 = η̇3η−3 sin3(r) cos(r). Mathematica solves this
equation to yield

η(r) = c1 exp

(
1

2
log
(
1− cos

2
3 (r)

))
· exp

(
−1

4
log
(
cos

2
3 (r) + cos

4
3 (r) + 1

))
· exp

(
−
√
3

2
tan−1

(
2 cos

2
3 (r) + 1√
3

))
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and consequently

ϕ1,4(r) = c1 sin(r) exp

(
−
√
3

2
tan−1

(
2 cos

2
3 (r) + 1√
3

))

·
(√

1− cos
2
3 (r) 3

√
cos(r)

(
cos

2
3 (r) + cos

4
3 (r) + 1

)5/4)−1

.

This is defined for 0 < r < π
2 ; there is an apparent singularity at r = 0 which

we ignore for the moment. We set c1 = 33/4e
π

2
√

3 and expand ϕ1,4(r) for r > 0:

ϕ1,4(r) = 1 +
1

2
r2 +

13

72
r4 +

1177

19440
r6 +

7369

362880
r8 +

681907

97977600
r10 +O(r12).

We conclude that ϕ1,4 is regular at 0 with ϕ1,4(0) = 1 and thus this is the
radial conformal deformation given by Theorem 1.2. □

Remark 2.5. The injectivity radius of CP2 is π
2 . Since limr→π

2
ψ(r) = ∞, ψ

does not extend to all of CP2. Since

ψ(r) ∼ 33/4e
π

4
√

3

{π2 − r} 1
3

+O(1) as r → π

2
,

ψ is integrable on [0, π2 ] so the deformed metric on BCP2,P is geodesically in-
complete.

3. Prescribing the volume density asymptotics

In Section 3.1 we establish the first four Assertions of Theorem 1.4 and in
Section 3.2, we establish the first two Assertions of Theorem 1.6. The heart of
the matter, of course, is to distinguish the manifolds Mi,m,H⃗. In Section 3.3,

we review some facts concerning the Weyl conformal curvature operator. In
Section 3.4, we complete the proof of Theorem 1.4 and in Section 3.5, we
complete the proof of Theorem 1.6.

3.1. The proof of Assertions (1)–(4) of Theorem 1.4

Since the underlying manifold is unchanged, and since CPk, HPk, and OP2

are compact, it is immediate that Mi,m,H⃗ is compact for 1 ≤ i ≤ 3. If i ≥ 4,

then Mi,m is a homogeneous space and hence geodesically complete. Since
the warping function ψ is 1 outside a compact set, it is follows that Mi,m,⃗h is

geodesically complete for 4 ≤ i ≤ 7. This establishes Assertions (1) and (2) of
Theorem 1.4.

Assertion (3) of Theorem 1.4 follows from Corollary 2.2; a radial conformal
deformation of a central harmonic space is again central harmonic. Let H =
{H0, . . . }, where H0 = 1 and Hν = 0 if ν is odd. Any formal Taylor series can
be realized. Thus, we can find the germ of a smooth positive even function Ξ
of 1-real variable so that Ξ(t) ∼

∑∞
ν=0 Hνt

ν . We apply Theorem 1.2 to find the

germ of a radial function ψ so Θ̃Mψ (rMψ ) = Ξ(rMψ ) and thus Θ̃Mψ has the right
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asymptotic coefficients. By using a partition of unity, we may assume ψ(r) = 1
for r ≥ ε. Assertion (4) of Theorem 1.4 then follows.

3.2. The proof of Assertions (1), (2) of Theorem 1.6

Let m ≥ 5 be odd and let M = (M, g) := Mi,m. It is obvious from the
definition that M is central harmonic at the center 0 of the small geodesic ball
defining M . We argue as above to find the germ of a radial function ψ so Θ̃Mψ
has the right asymptotic coefficients. By using a partition of unity, we can
suppose that ψ grows sufficiently rapidly at the boundary of M and hence Mψ

is geodesically complete.

3.3. The Weyl tensor

Let ρ be the Ricci tensor and let τ be the scalar curvature. Let

W (x, y, z, w) := R(x, y, z, w) + τ
g(x,w)g(y, z)− g(x, z)g(y, w)

(m− 1)(m− 2)

+
ρ(x, z)g(y, w) + ρ(y, w)g(x, z)− ρ(y, z)g(x,w)− ρ(x,w)g(y, z)

m− 2

be the Weyl conformal curvature tensor. The Weyl conformal curvature oper-
ator W is the skew-symmetric operator which is characterized by the relation

g(W(x, y)z, w) =W (x, y, z, w).

The Weyl Jacobi operator JW is the self-adjoint operator defined by

JW (x)y := W(y, x)x.

We say that M is conformally flat if M is isometric to Rmψ for some ψ. The
following result is well known.

Lemma 3.1. Let M be a Riemannian manifold of dimension m ≥ 4. Then

WMψ = ψ2WM, WMψ = WM, and JW
Mψ = JW

M .

Furthermore, M is conformally flat if and only if WM vanishes identically.

3.4. The proof of Theorem 1.4(5)

We examine the eigenvalue structure of the Jacobi operator J and the con-
formal Jacobi operator JW of the spaces Mi,m for m even.

Lemma 3.2. Let M = (M, g) be a rank 1 symmetric space with positive cur-
vature and let x ∈ TP (M) and y ∈ TP (M) be unit tangent vectors. Let k ≥ 2.

(1) J (x) is a self-adjoint operator with eigenvalues {0, 1, 4} and corre-
sponding eigenspace decomposition of TP (M) = E0(x)⊕E1(x)⊕E4(x).
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Let y be a unit tangent vector. We have:

M dim{E0(x)} dim{E1(x)} dim{E4(x)} ρ(y, y)
Rm m 0 0 0

CPk 1 2k − 2 1 2k + 2

HPk 1 4k − 4 3 4k + 8

OP2 1 8 7 36

(2) The decomposition of Assertion (1) gives the eigenspace decomposition
of JW (x). The corresponding eigenvalues λi are given by:

M λ0 λ1 λ4
Rm 0 0 0

CPk 0 1− 2k+2
2k−1 4− 2k+2

2k−1

HPk 0 1− 4k+8
4k−1 4− 4k+8

4k−1

OP2 0 1− 36
15 4− 36

15

Proof. The eigenvalue and eigenspace structure of the Jacobi operator for Sm,
CPk, and HPk is well known. The curvature tensor of OP2 was computed by
Brown and Gray [4] (see Theorem 6.1); the corresponding eigenvalue decompo-
sition of the Jacobi operator computed by Nikolayevsky [11] (see the discussion
on p. 510). The rank 1 symmetric spaces are Einstein. For such spaces, the
Weyl conformal Jacobi operator is defined by subtracting a suitable multiple

κ of the Jacobi operator for the sphere where we set κ := ρM(x,x)
m−1 to ensure

Tr{JW
M }(x) = 0 for all unit vectors x. Assertion (2) now follows. □

We reverse the sign of the curvature tensor to compute for the negative
curvature duals. The following result is now immediate from Lemma 3.1 and
from Lemma 3.2.

Lemma 3.3. Let m ≥ 4 be even, let M = Mi,m,H⃗, let Q be a point of M , and

let 0 ̸= x ∈ TQ(Mi,m).

(1) If i < 7, then 0 is an eigenvalue of multiplicity 1 of JW
M (x). If i = 7,

then JW
M (x) vanishes identically.

(2) If i = 1, so Mi,m = CPk for m = 2k and k ≥ 2, then JW
M (x) has a

negative eigenvalue of multiplicity m − 2 and a positive eigenvalue of
multiplicity 1.

(3) If i = 2, so Mi,m = HPk for m = 4k and k ≥ 2, then JW
M (x) has a

negative eigenvalue of multiplicity m − 4 and a positive eigenvalue of
multiplicity 3.

(4) If i = 3, so Mi,m = OP2 for m = 16, then JW
M (x) has a negative

eigenvalue of multiplicity 8 and a positive eigenvalue of multiplicity 7.

(5) If i = 4, so Mi,m = C̃P
k
for m = 2k and k ≥ 2, then JW

M (x) has a
positive eigenvalue of multiplicity m − 2 and a negative eigenvalue of
multiplicity 1.
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(6) If i = 5, so Mi,m = H̃P
k
for m = 4k and k ≥ 2, then JW

M (x) has a
positive eigenvalue of multiplicity m − 4 and a negative eigenvalue of
multiplicity 3.

(7) If i = 6, so Mi,m = ÕP
2
for m = 16, then JW

M (x) has a positive
eigenvalue of multiplicity 8 and a negative eigenvalue of multiplicity 7.

Assertion (5) of Theorem 1.4 now follows from Lemma 3.3; this completes
the proof of Theorem 1.4 □

3.5. The proof of Theorem 1.6(3)

Let m ≥ 5 be odd. Let y = (x, t) be a tangent vector of Mi,m where y is a
tangent vector to Mi,m−1 and t is a tangent vector to R. Since J is conformal,
we may use Equation (1.1) to see:

(3.1) JW
M
i,m,H⃗

(x) = JW
Mi,m(x) = JW

Mi,m−1
(y).

The following result now follows from Equation (3.1) and from Lemma 3.3.

Lemma 3.4. Let m ≥ 5 be odd, let M = Mi,m,H⃗, let Q be a point of Mi,m.

Choose x ∈ TP (Mi,m) so JW
M (x) has maximal rank.

(1) If i < 7, then 0 is an eigenvalue of multiplicity 2 of JW
M (x). If i = 7,

then JW
M (x) vanishes identically.

(2) If i = 1 so Mi,m−1 = CPk for m− 1 = 2k and k ≥ 2, then JW
M (x) has

a negative eigenvalue of multiplicity m− 3 and a positive eigenvalue of
multiplicity 1.

(3) If i = 2 so Mi,m−1 = HPk for m− 1 = 4k and k ≥ 2, then JW
M (x) has

a negative eigenvalue of multiplicity m− 5 and a positive eigenvalue of
multiplicity 3.

(4) If i = 3 so Mi,m−1 = OP2 for m− 1 = 16, then JW
M (x) has a negative

eigenvalue of multiplicity 8 and a positive eigenvalue of multiplicity 7.

(5) If i = 4 so Mi,m−1 = C̃P
k
for m− 1 = 2k and k ≥ 2, then JW

M (x) has
a positive eigenvalue of multiplicity m− 3 and a negative eigenvalue of
multiplicity 1.

(6) If i = 5 so Mi,m−1 = H̃P
k
for m− 1 = 4k and k ≥ 2, then JW

M (x) has
a positive eigenvalue of multiplicity m− 5 and a negative eigenvalue of
multiplicity 3.

(7) If i = 6 so Mi,m−1 = ÕP
2
for m− 1 = 16, then JW

M (x) has a positive
eigenvalue of multiplicity 8 and a negative eigenvalue of multiplicity 7.

Assertion (3) of Theorem 1.6 now follows; this completes the proof of The-
orem 1.6 and thereby of all of the results of this paper.
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