DOI QR코드

DOI QR Code

RESULTS ON THE ALGEBRAIC DIFFERENTIAL INDEPENDENCE OF THE RIEMANN ZETA FUNCTION AND THE EULER GAMMA FUNCTION

  • Xiao-Min Li (Department of Mathematics Ocean University of China) ;
  • Yi-Xuan Li (Department of Mathematics Ocean University of China)
  • 투고 : 2022.11.29
  • 심사 : 2023.02.17
  • 발행 : 2023.11.30

초록

In 2010, Li-Ye [13, Theorem 0.1] proved that P(ζ(z), ζ'(z), . . . , ζ(m)(z), Γ(z), Γ'(z), Γ"(z)) ≢ 0 in ℂ, where m is a non-negative integer, and P(u0, u1, . . . , um, v0, v1, v2) is any non-trivial polynomial in its arguments with coefficients in the field ℂ. Later on, Li-Ye [15, Theorem 1] proved that P(z, Γ(z), Γ'(z), . . . , Γ(n)(z), ζ(z)) ≢ 0 in z ∈ ℂ for any non-trivial distinguished polynomial P(z, u0, u1, . . ., un, v) with coefficients in a set Lδ of the zero function and a class of nonzero functions f from ℂ to ℂ ∪ {∞} (cf. [15, Definition 1]). In this paper, we prove that P(z, ζ(z), ζ'(z), . . . , ζ(m)(z), Γ(z), Γ'(z), . . . , Γ(n)(z)) ≢ 0 in z ∈ ℂ, where m and n are two non-negative integers, and P(z, u0, u1, . . . , um, v0, v1, . . . , vn) is any non-trivial polynomial in the m + n + 2 variables u0, u1, . . . , um, v0, v1, . . . , vn with coefficients being meromorphic functions of order less than one, and the polynomial P(z, u0, u1, . . . , um, v0, v1, . . . , vn) is a distinguished polynomial in the n + 1 variables v0, v1, . . . , vn. The question studied in this paper is concerning the conjecture of Markus from [16]. The main results obtained in this paper also extend the corresponding results from Li-Ye [12] and improve the corresponding results from Chen-Wang [5] and Wang-Li-Liu-Li [23], respectively.

키워드

과제정보

This work is supported in part by the NSFC (No. 11171184), the NSF of Shandong Province, China (No. ZR2019MA029) and the FRFCU (No. 3016000841964007).

참고문헌

  1. L. Ahlfors, Complex Analysis, McGraw-Hill, New York, 1979.
  2. S. B. Bank and R. P. Kaufman, A note on Holder's theorem concerning the gamma function, Math. Ann. 232 (1978), no. 2, 115-120. https://doi.org/10.1007/BF01421399
  3. C. A. Berenstein and R. Gay, Complex Variables, Graduate Texts in Mathematics, 125, Springer, New York, 1991. https://doi.org/10.1007/978-1-4612-3024-3
  4. H. P. Cartan, Sur les systemes de fonctions holomorphes a varietes lineaires lacunaires et leurs applications, Ann. Sci. Ecole Norm. Sup. (3) 45 (1928), 255-346. https://doi.org/10.24033/asens.786
  5. W. Chen and Q. Wang, On the differential and difference independence of Γ and ζ, Acta Math. Sci. Ser. B (Engl. Ed.) 41 (2021), no. 2, 505-516. https://doi.org/10. 1007/s10473-021-0214-1 https://doi.org/10.1007/s10473-021-0214-1
  6. Y. M. Chiang and S. Feng, Difference independence of the Riemann zeta function, Acta Arith. 125 (2006), no. 4, 317-329. https://doi.org/10.4064/aa125-4-2
  7. G. H. Hardy and M. Riesz, The general theory of Dirichlet's series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 18, Stechert-Hafner, Inc., New York, 1964.
  8. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
  9. D. Hilbert, Mathematische Probleme, Archiv f. Math. u. Phys. 3. Reihe. Bd.I, 1901, S. 44-63; S. 213-237.
  10. O. Holder, Ueber die Eigenschaft der Gammafunction keiner algevraischen Differential-gleichung zu genugen, Math. Ann. 28 (1886), no. 1, 1-13. https://doi.org/10.1007/BF02430507
  11. I. Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, 15, de Gruyter, Berlin, 1993. https://doi.org/10.1515/9783110863147
  12. B. Q. Li and Z. Ye, On differential independence of the Riemann zeta function and the Euler gamma function, Acta Arith. 135 (2008), no. 4, 333-337. https://doi.org/10.4064/aa135-4-2
  13. B. Q. Li and Z. Ye, Algebraic differential equations concerning the Riemann zeta function and the Euler gamma function, Indiana Univ. Math. J. 59 (2010), no. 4, 1405-1415. https://doi.org/10.1512/iumj.2010.59.3986
  14. B. Q. Li and Z. Ye, On algebraic differential properties of the Riemann ζ-function and the Euler Γ-function, Complex Var. Elliptic Equ. 56 (2011), no. 1-4, 137-145. https://doi.org/10.1080/17476930903394788
  15. B. Q. Li and Z. Ye, Algebraic differential equations with functional coefficients concerning ζ and Γ, J. Differential Equations 260 (2016), no. 2, 1456-1464. https://doi.org/10.1016/j.jde.2015.09.035
  16. L. Markus, Differential independence of Γ and ζ, J. Dynam. Differential Equations 19 (2007), no. 1, 133-154. https://doi.org/10.1007/s10884-006-9034-1
  17. J. Miles, Quotient representations of meromorphic functions, J. Analyse Math. 25 (1972), 371-388. https://doi.org/10.1007/BF02790046
  18. D. D. Mordykhai-Boltovskoi, On hypertranscendence of the function ξ (x, s), Izv. Politekh. Inst. Warsaw 2 (1914), 1-16.
  19. A. M. Ostrowski, Uber Dirichletsche Reihen und algebraische Differentialgleichungen, Math. Z. 8 (1920), no. 3-4, 241-298. https://doi.org/10.1007/BF01206530
  20. J. Steuding, Value-distribution of L-functions, Lecture Notes in Mathematics, 1877, Springer, Berlin, 2007.
  21. E. C. Titchmarsh, The Theory of Functions, second edition, Oxford Univ. Press, Oxford, 1939.
  22. S. Voronin, The distribution of the nonzero values of the Riemann ζ-function, Trudy Mat. Inst. Steklov. 128 (1972), 131-150, 260.
  23. Q. Y. Wang, Z. Li, M. Liu, and N. Li, On algebraic differential equations concerning the Riemann-zeta function and the Euler-gamma function, Complex Var. Elliptic Equ. 67 (2022), no. 10, 2507-2518. https://doi.org/10.1080/17476933.2021.1931849
  24. L. Yang, Value Distribution Theory, Springer-Verlag, Berlin Heidelberg, 1993.
  25. C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Acad. Publ., Dordrecht, 2003.