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TIME ANALYTICITY FOR THE HEAT EQUATION UNDER

BAKRY-ÉMERY RICCI CURVATURE CONDITION

Ling Wu

Abstract. Inspired by Hongjie Dong and Qi S. Zhang’s article [3], we
find that the analyticity in time for a smooth solution of the heat equation

with exponential quadratic growth in the space variable can be extended

to any complete noncompact Riemannian manifolds with Bakry-Émery

Ricci curvature bounded below and the potential function being of at

most quadratic growth. Therefore, our result holds on all gradient Ricci
solitons. As a corollary, we give a necessary and sufficient condition on

the solvability of the backward heat equation in a class of functions with

the similar growth condition. In addition, we also consider the solution in
certain Lp spaces with p ∈ [2,+∞) and prove its analyticity with respect

to time.

1. Introduction

Let (Mn, g) be an n-dimensional Riemannian manifold. The Bakry-Émery
Ricci curvature tensor of M ([1]) is defined as

(1) Ricf := Ric+Hess f,

where f is a smooth function onM (called the potential function), and Ric and
Hess f denote the Ricci curvature tensor and the Hessian of f , respectively. It
is clear that when f is a constant, Ricf reduces to the Ricci curvature tensor. A
gradient Ricci soliton is a Riemannian manifold (Mn, g) with constant Bakry-

Émery Ricci curvature, namely,

(2) Ric+Hess f = λg
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for some constant λ. It is called a shrinking, steady, or expanding Ricci soliton
when λ > 0, = 0, or < 0, respectively. Also, manifolds with Bakry-Émery Ricci
curvature bound are closely related to the singularity analysis of the Ricci flow
and Ricci limit spaces (see e.g., [6, 8, 10, 14, 15]). Therefore, many efforts have
been made to extend the results under the Ricci curvature condition to the
Bakry-Émery Ricci curvature condition.

The study of the analyticity of the heat equation has a rich history. For
generic solutions, as expected, the space analyticity is valid. However, the time
analyticity is more delicate and is indeed invalid. Because in the Euclidean
space, it is easy to construct a non-time-analytic solution of the heat equation
in a finite space-time cylinder. Therefore, it is meaningful to study the time
analyticity of the heat equation.

Recently, Qi S. Zhang [18] discovered on a complete noncompact Riemann-
ian manifold whose Ricci curvature is bounded from below, any ancient solution
of the heat equation with exponential growth in the space variable is analytic
in time. This result was improved to any solution with exponential quadratic
growth by Hongjie Dong and Qi S. Zhang [3]. In particular, they gave a neces-
sary and sufficient condition on the solvability of the backward heat equation.
In [17], Jiayong Wu obtained a similar result on the time analyticity of the heat
equation for complete noncompact gradient shrinking Ricci solitons. For more
results, see [4], [5], [7], [16] and references therein.

In [3], for Riemannian manifolds with Ricci curvature bounded below the
key estimate for proving the time analyticity of the heat equation is the para-
bolic mean value inequality, which can also be found in [13] under the Bakry-

Émery Ricci curvature condition. Here we emphasize that our result generalizes
Hongjie Dong and Qi S. Zhang’s result [3] and can be extended to all gradient
Ricci solitons.

Theorem 1.1. Let (Mn, g) be a complete noncompact Riemannian manifold
with Ricf ≥ −Kg for some constant K ≥ 0. For a fixed point o ∈ M , assume
that there exist non-negative constants a and b such that

(3) |f(x)| ≤ ad2(x, o) + b for all x ∈M,

where d(x, o) is the distance function from x to o. Let u(x, t) be a smooth solu-
tion of the heat equation (∆−∂t)u = 0 on M × [−2, 0] and satisfies exponential
quadratic growth in the space variable, i.e.,

(4) |u(x, t)| ≤ A1e
A2d

2(x,o) for all (x, t) ∈M × [−2, 0],

where A1 and A2 are some positive constants. Then u(x, t) is analytic in time
t ∈ [−1, 0] with radius δ > 0 depending only on n,K, a, b and A2. Besides, we
have

(5) u(x, t) =

∞∑
j=0

aj(x)
tj

j!
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with ∆aj(x) = aj+1(x) and

(6) |aj(x)| ≤ A1A
j+1
3 (j + 1)jeA4d

2(x,o), j = 0, 1, 2, . . . ,

where A3 and A4 are two positive constants depending on K,n, a, b, A2 and
n, a,A2, respectively.

Remark 1.2. If the potential function is 0, i.e., a = b = 0 in (13), after careful
calculation, then we get A4 = 2A2 in (6). Theorem 1.1 reduces Honejie Dong
and Qi S. Zhang’s result [3].

Remark 1.3. The growth condition (4) is sharp due to the Tychonov’s solution
of the heat equation in Rn × (−∞,+∞) (see Remark 2.3 in [3]).

The conditions in the above theorem are especially satisfied on gradient Ricci
solitons. For gradient Ricci solitons, it is well known that

(7) S + |∇f |2 = 2λf + C,

where S is the scalar curvature of M , ∇f is the gradient of f and C is a
constant.

For gradient shrinking solitons, it is showed in [2] that S ≥ 0, then setting

f̃ = f + C
2λ , (7) implies

|∇f̃ |2 ≤ 2λf̃ ,

so
|f̃(x)| ≤ λd2(x, o) + 2|f̃(o)|.

For gradient expanding solitons, it is showed in [11, 19] that S ≥ nλ, then (7)
implies that ∣∣∣∣∇

√
−f − C − nλ

2λ

∣∣∣∣ ≤
√

−λ
2
.

Hence √
−f(x)− C − nλ

2λ
≤
√
−λ
2
d(x, o) +

√
−f(o)− C − nλ

2λ
,

setting f̃ = f + C−nλ
2λ , then

|f̃(x)| ≤ −λd2(x, o) + 2|f̃(o)|.
For gradient steady solitons, we know S ≥ 0 in [2].

If C = 0 in (7), then f is a constant.
If C ̸= 0 in (7), by scaling the metric g, we can get

S + |∇f |2 = 1,

which implies
|f(x)| ≤ d(x, o) + |f(o)|.

To sum up, for gradient Ricci solitons, we can always adjust f or the metric
such that

(8) |f(x)| ≤ ad2(x, o) + b,
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where a and b are two positive constants depending on λ and f(o), respectively.
Therefore, Theorem 1.1 implies the analyticity in time for smooth solutions

of the heat equation on complete noncompact gradient Ricci solitons.

Theorem 1.4. Let (Mn, g) be a complete noncompact gradient Ricci soliton
satisfying (2). Let u(x, t) be a smooth solution of the heat equation (∆−∂t)u = 0
on M × [−2, 0] and satisfies the growth condition

(9) |u(x, t)| ≤ A1e
A2d

2(x,o) for all (x, t) ∈M × [−2, 0],

where A1 and A2 are some positive constants, and d(x, o) is the distance func-
tion from x to a fixed point o. Then u(x, t) is analytic in time t ∈ [−1, 0] with
radius δ > 0 depending only on n, λ, f(o) and A2. Besides, we have

(10) u(x, t) =

∞∑
j=0

aj(x)
tj

j!

with ∆aj(x) = aj+1(x) and

(11) |aj(x)| ≤ A1A
j+1
3 (j + 1)jeA4d

2(x,o), j = 0, 1, 2, . . . ,

where A3 and A4 are two positive constants depending on n, λ, f(o), A2 and
n, λ,A2, respectively.

Remark 1.5. In [17], Jiayong Wu obtained a similar result on the time ana-
lyticity of the heat equation on the complete noncompact gradient shrinking
Ricci solitons. More precisely, he showed that the bound of aj(x) in (10) is

(12) |aj(x)| ≤ A1e
−µ

2 e
f(x)
2 (f(x) + 1)

n
4Aj+1

3 jje2A2d
2(x,o), j = 0, 1, 2, . . . ,

where A3 is a constant depending on n and A2 and µ = µ(g, 1) denotes Perel-
man’s entropy functional.

Comparing (11) with (12), it is not difficult to find that our result does not
depend on µ.

As an application of Theorem 1.1, we give a solvable result for the backward
heat equation.

Corollary 1.6. Let (Mn, g) be a complete noncompact Riemannian manifold
with Ricf ≥ −Kg for some constant K ≥ 0. For a fixed point o ∈ M , assume
that there exist non-negative constants a and b such that

(13) |f(x)| ≤ ad2(x, o) + b for all x ∈M,

where d(x, o) is the distance function from x to o. The Cauchy problem for the
backward heat equation

(14)

{
(∆ + ∂t)u = 0,

u(x, 0) = a(x)
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has a smooth solution with exponential quadratic growth of the space variable
in M × (0, δ) for some δ > 0 if and only if

(15) |∆ja(x)| ≤ Aj+1
3 (j + 1)jeA4d

2(x,o), j = 0, 1, 2, . . . ,

where A3 and A4 are some positive constants.

In addition, we also consider the solution of the heat equation in Lp spaces
with p ∈ [2,+∞) and prove its analyticity with respect to the time variable.

Theorem 1.7. Let (Mn, g) be a complete noncompact Riemannian manifold
with Ricf ≥ −Kg for some constant K ≥ 0. For a fixed point o ∈ M , assume
that there exist non-negative constants a and b such that

(16) |f(x)| ≤ ad2(x, o) + b for all x ∈M,

where d(x, o) is the distance function from x to o. Let u(x, t) be a smooth
solution of the heat equation (∆ − ∂t)u = 0 on M × [−2, 0]. For any p ≥ 2,
assume that there exists a positive constant L such that

(17)

(∫
M

|u(x, t)|pdv
) 1

p

≤ L for all t ∈ [−2, 0].

Then u(x, t) is analytic in time t ∈ [−1, 0] with radius δ > 0 depending only on
n,K, a, b and p.

Moreover, we have

(18) u(x, t) =

∞∑
j=0

aj(x)
tj

j!

with ∆aj(x) = aj+1(x) and

(19) |aj(x)| ≤ Aj+1
6 (j + 1)jeA7d

2(x,o) Vol(Bo(1))
− 1

pL, j = 0, 1, 2, . . . ,

where A6 and A7 are two positive constants depending on n,K, a, b, p and
n, a,K, p, respectively.

The rest of this paper is organized as follows. In Section 2, we recall a volume
comparison theorem and a parabolic mean value inequality from [13] for com-

plete Riemannian manifolds with Bakry-Émery Ricci curvature bounded below
and the potential function locally bounded. In Section 3, applying Hongjie
Dong and Qi S. Zhang’s method of proof [3], we utilize the mean value inequal-
ity of Section 2 to prove Theorem 1.1, Corollary 1.6 and Theorem 1.7.

2. Preliminaries

For a fixed point o ∈M and R > 0, we define

L(R) = sup
Bo(3R)

|f |,

where Bo(3R) is the geodesic ball centered at o ∈M with radius 3R.
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Theorem 2.1 ([13]). Let (Mn, g) be a complete Riemannian manifold with
Ricf ≥ −Kg for some constant K ≥ 0. Then the following conclusions are
true.

(a)(Laplacian comparison) Let r = d(y, p) be the distance from any point y
to some fixed point p ∈ Bo(R) with 0 < r < R. Then for 0 < r1 < r2 < R, we
have

(20)

∫ r2

r1

(∆r − n− 1

r
)dr ≤ K

6
(r22 − r21) + 6L(R).

(b)(Volume element comparison) Take any point p ∈ Bo(R) and denote the
volume form in geodesic polar coordinates centered at p with J(r, θ, p)drdθ,
where r > 0 and θ ∈ Sp(M), a unit tangent vector at p. Then for 0 < r1 <
r2 < R, we have

(21)
J(r2, θ, p)

J(r1, θ, p)
≤
(
r2
r1

)n−1

e
K
6 (r22−r21)+6L(R).

(c)(Volume comparison) For any p ∈ Bo(R), 0 < r1 < r2 < R, we have

(22)
Vol(Bp(r2))

Vol(Bp(r1))
≤
(
r2
r1

)n

e
K
6 (r22−r21)+6L(R),

where Vol(·) denotes the volume of a region.

In [13], combining Theorem 2.1 and using a similar argument as in the proof
of Lemma 3.2 in [9], the authors obtained a local Sobolev inequality.

Theorem 2.2 ([13]). Let (Mn, g) be a complete Riemannian manifold with
Ricf ≥ −Kg for some constant K ≥ 0. Then there exist constants µ = 4n−2 >
2, c3 and c4, all depending only on n such that

(23)

(∫
Bo(r)

|u|
2µ

µ−2 dv

)µ−2
µ

≤ c3e
c4(Kr2+L(R))

Vol(Bo(r))
2
µ

r2
∫
Bo(r)

(|∇u|2 + r−2u2)dv

for all 0 < r < R, where u ∈ C∞ (Bo(r)).

Following the argument of Theorem 5.2.9 in [12], [13] showed a parabolic
mean value inequality which is crucial to prove the analyticity of time. Its
proof technique is the Moser iteration applied to the Sobolev inequality (23).

Proposition 2.3 (Mean value inequality [13]). Let (Mn, g) be a complete Rie-
mannian manifold with Ricf ≥ −Kg for some constant K ≥ 0. For any real

number s and any 0 < δ̃ < δ′ ≤ 1, let u be a smooth non-negative subsolution
of the heat equation in the cylinder Q = Bo(r)× (s− r2, s), 0 < r < R.

For 2 ≤ p <∞, there exist constants c̃1(n) and c̃2(n) such that

(24) sup
Qδ̃

up ≤ c̃1(n)e
c̃2(n)(Kr2+L(R))

(δ′ − δ̃)4nr2 Vol(Bo(r))
·
∫
Qδ′

updvdt.
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For 0 < p < 2, there exist constants c̃3(n, p) and c̃4(n) such that

(25) sup
Qδ̃

up ≤ c̃3(n, p)e
c̃4(n)(Kr2+L(R))

(δ′ − δ̃)4nr2 Vol(Bo(r))
·
∫
Qδ′

updvdt.

Here Qδ̃ = Bo(δ̃r)× (s− δ̃r2, s), Qδ′ = Bo(δ
′r)× (s− δ′r2, s).

3. Proof of the main results

In this section, we apply the volume comparison theorem and the parabolic
mean value inequality in Section 2 to prove the results of this article. We first
prove Theorem 1.1.

Proof of Theorem 1.1. Since the heat equation is linear, we can assume that
A1 = 1. Indeed, we just need to prove the time analyticity result at (x, 0) for
any x ∈M .

Given R ≥ 1. For any point x ∈ Bo(R) and a positive integer j, since the
solution u(x, t) is smooth, we choose t ∈ [−δ, 0] for 0 < δ < 1, by Taylor’s
theorem,

(26) u(x, t)−
j−1∑
i=0

∂itu(x, 0)
ti

i!
=
tj

j!
∂jsu(x, s),

where s = s(x, t, j) ∈ [t, 0]. It suffices to prove that the right-hand side of (26)
tends to zero when j tends to infinity for any x ∈ Bo(R) and t ∈ [−δ, 0] with
δ > 0 sufficiently small.

Since u2 is a non-negative subsolution to the heat equation, we apply Propo-
sition 2.3 with p = 1. Given a point (x0, t0) ∈M×[−1, 0] and a positive integer

k, by letting s = t0, r =
1√
k
, δ̃ = 1

2 , δ
′ = 1 in (25), we have

u2(x0, t0) ≤
c1(n)e

c2(n)(K
1
k+ sup

Bx0 ( 3√
k

)

|f |)

( 12 )
4n 1

k Vol(Bx0
( 1√

k
))

∫
Bx0

( 1√
k
)×[t0− 1

k ,t0]
u2dvdt.

We observe that

sup
Bx0 (

3√
k
)

|f | ≤ sup
Bo(d(x0,o)+

3√
k
)

|f | ≤ a

(
d(x0, o)+

3√
k

)2

+b ≤ 2ad2(x0, o)+
18a

k
+b,

then we have

(27) u2(x0, t0) ≤
c3(n)e

c4(n)(K+ad2(x0,o)+a+b)k

Vol(Bx0(
1√
k
))

∫
Bx0 (

1√
k
)×[t0− 1

k ,t0]
u2dvdt.

Since (∂t −∆)∂k−1
t u = 0, from (27), we obtain

(∂k−1
t u)2(x0, t0)(28)

≤ c3(n)e
c4(n)(K+ad2(x0,o)+a+b)k

Vol(Bx0
( 1√

k
))

∫
Bx0

( 1√
k
)×[t0− 1

k ,t0]
(∂k−1

t u)2dvdt
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for a positive integer k.
Next, we will bound the right-hand side of (28).
For positive integers j = 1, 2, . . . , k, we define the following domains:

Ω1
j = Bx0

(
j√
k

)
×
[
t0 −

j

k
, t0

]
,

Ω2
j = Bx0

(
j + 0.5√

k

)
×
[
t0 −

j + 0.5

k
, t0

]
.

It is easy to see that

(29) Ω1
j ⊂ Ω2

j ⊂ Ω1
j+1.

Let ψ
(1)
j be a standard Lipschitz cut-off function supported in

Bx0

(
j + 0.5√

k

)
×
(
t0 −

j + 0.5

k
, t0 +

j + 0.5

k

)
satisfying

(30) ψ
(1)
j = 1 in Ω1

j and |∇ψ(1)
j |2 + |∂tψ(1)

j | ≤ Ck,

where C is a universal constant that may be changed line by line.

For the above cut-off function ψ = ψ
(1)
j , since (∆− ∂t)u = 0, using integra-

tion by parts, we compute that∫
Ω2

j

(ut)
2ψ2dvdt

=

∫
Ω2

j

ut∆uψ
2dvdt

= −
∫
Ω2

j

⟨(∇u)t,∇u⟩ψ2dvdt−
∫
Ω2

j

ut
〈
∇u,∇ψ2

〉
dvdt

= − 1

2

∫
Ω2

j

(|∇u|2)tψ2dvdt− 2

∫
Ω2

j

utψ ⟨∇u,∇ψ⟩ dvdt

= − 1

2

∫
Bx0

(
j+0.5√

k

)(|∇u|2ψ2)(x, t0)dv +
1

2

∫
Ω2

j

|∇u|2(ψ2)tdvdt

− 2

∫
Ω2

j

utψ ⟨∇u,∇ψ⟩ dvdt

≤ 1

2

∫
Ω2

j

|∇u|2(ψ2)tdvdt+
1

2

∫
Ω2

j

(ut)
2ψ2dvdt+ 2

∫
Ω2

j

|∇u|2|∇ψ|2dvdt.

By (29) and (30), we have that

(31)

∫
Ω1

j

(ut)
2dvdt ≤ Ck

∫
Ω2

j

|∇u|2dvdt.
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Let ψ
(2)
j also be a standard Lipschitz cut-off function supported in

Bx0

(
j + 1√
k

)
×
(
t0 −

j + 1

k
, t0 +

j + 1

k

)
satisfying

(32) ψ
(2)
j = 1 in Ω2

j and |∇ψ(2)
j |2 + |∂tψ(2)

j | ≤ Ck.

Then we can obtain

(33)

∫
Ω2

j

|∇u|2dvdt ≤ Ck

∫
Ω1

j+1

u2dvdt.

To achieve (33), considering the cut-off function φ = ψ
(2)
j , by (∆ − ∂t)u = 0,

using integration by parts, we are continue to calculate that

1

2

∫
Ω1

j+1

∂t(u
2φ2)dvdt−

∫
Ω1

j+1

φφtu
2dvdt

=

∫
Ω1

j+1

uutφ
2dvdt

=

∫
Ω1

j+1

u∆uφ2dvdt

= −
∫
Ω1

j+1

|∇u|2φ2dvdt− 2

∫
Ω1

j+1

uφ ⟨∇u,∇φ⟩ dvdt.

Noticing that

1

2

∫
Ω1

j+1

∂t(u
2φ2)dvdt =

1

2

∫
Bx0

(
j+1√

k

)(u2φ2)(x, t0)dv ≥ 0,

we have that∫
Ω1

j+1

|∇u|2φ2dvdt

≤
∫
Ω1

j+1

φφtu
2dvdt− 2

∫
Ω1

j+1

uφ ⟨∇u,∇φ⟩ dvdt

≤
∫
Ω1

j+1

φφtu
2dvdt+

1

2

∫
Ω1

j+1

|∇u|2φ2dvdt+ 2

∫
Ω1

j+1

u2|∇φ|2dvdt.

This implies that∫
Ω1

j+1

|∇u|2φ2dvdt ≤ 2

∫
Ω1

j+1

φφtu
2dvdt+ 4

∫
Ω1

j+1

u2|∇φ|2dvdt.

Then (33) follows by (29) and (32).
Combining (31) and (33), we achieve that∫

Ω1
j

(ut)
2dvdt ≤ Ck2

∫
Ω1

j+1

u2dvdt.
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Since above inequality holds for all solutions of the heat equation, we can
replace u by ∂jt u. By induction, we conclude that∫

Ω1
1

(∂k−1
t u)2dvdt ≤ Ck−1k2(k−1)

∫
Ω1

k

u2dvdt.

By the selection of Ω1
1 and Ω1

k, we substitute the above inequality into (28) to
get that

(34) (∂k−1
t u)2(x0, t0) ≤

c3(n)e
c4(n)(K+ad2(x0,o)+a+b)k

Vol(Bx0
( 1√

k
))

Ck−1k2(k−1)

∫
Ω1

k

u2dvdt.

Using exponential quadratic growth condition (4) and the triangle inequality,
for some point (x, t) ∈ Ω1

k we deduce

(35) |u(x, t)|2 ≤ e2A2(d(x,x0)+d(x0,o))
2

≤ e2A2(
√
k+d(x0,o))

2

≤ e4A2k+4A2d
2(x0,o).

By the volume comparison theorem (22), we have

(36)
Vol(Bx0

(
√
k))

Vol(Bx0(
1√
k
))

≤ kne

K
6 (k−

1
k )+6 sup

Bx0 (3
√

k)

|f |
≤ kne

K
6 k+6(2ad2(x0,o)+18ak+b).

Substituting (35) and (36) into (34) gives

(37) |∂k−1
t u(x0, t0)| ≤ Ak

3k
k−1eA4d

2(x0,o)

for all integers k ≥ 1. Here A3 and A4 are two positive constants depending
on K,n, a, b, A2 and n, a,A2, respectively.

Combining (37), for (26), we know that, for δ < 1
A3e

, the right-hand side of

(26) converges to 0 uniformly for x ∈ Bo(R) as j → ∞. Hence

u(x, t) =

∞∑
j=0

∂jt u(x, 0)
tj

j!
,

that is, u(x, t) is time analytic with radius δ. Write aj = aj(x) = ∂jt u(x, 0).
We have that

∂tu(x, t) =

∞∑
j=0

aj+1(x)
tj

j!
and ∆u(x, t) =

∞∑
j=0

∆aj(x)
tj

j!
,

where both series converge uniformly for (x, t) ∈ Bo(R) × [−δ, 0]. Since (∆ −
∂t)u = 0, this gives that

∆aj(x) = aj+1(x)

and

|aj(x)| ≤ Aj+1
3 (j + 1)jeA4d

2(x,o).

Here A3 and A4 are two positive constants depending on K,n, a, b, A2 and
n, a,A2, respectively. □

Next we apply Theorem 1.1 to prove Corollary 1.6.
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Proof of Corollary 1.6. Assume that u(x, t) is a smooth solution to (14) with
exponential quadratic growth of the space variable in M × (0, δ). Then

(∆− ∂t)u(x,−t) = 0 and |u(x,−t)| ≤ A1e
A2d

2(x,o),

where A1 and A2 are some positive constants. By Theorem 1.1, we have

u(x,−t) =
∞∑
j=0

aj(x)
(−t)j

j!
.

Combining the initial condition of (14) with Theorem 1.1, then (15) follows.

On the other hand, suppose (15) holds. Setting u(x, t) =
∑∞

j=0 ∆
ja(x) t

j

j! ,

by (15), it is easy to see that
∞∑
j=0

∆j+1a(x)
tj

j!
and

∞∑
j=0

∆ja(x)
∂tt

j

j!

all converge absolutely and uniformly in Bo(R) × [−δ, 0] for any fixed R > 0
and δ > 0 sufficiently small. Hence

(∆− ∂t)u(x, t) = 0 for (x, t) ∈M × [−δ, 0].
By (15) again, we get the exponential quadratic growth for u,

|u(x, t)| ≤
∞∑
j=0

|∆ja(x)| |t|
j

j!
≤ A3e

A4d
2(x,o)

∞∑
j=0

(A3(j + 1)|t|)j

j!
≤ A5e

A4d
2(x,o)

provided that t ∈ [−δ, 0] with δ > 0 sufficiently small.
Then a smooth solution with desired growth condition to (14) follows by

letting u = u(x,−t). □

The proof of Theorem 1.7 is similar to Theorem 1.1. We only present the
key steps.

Proof of Theorem 1.7. From (34), we know, for (x0, t0) ∈M × [−1, 0] and any
positive integer k,

(∂k−1
t u)2(x0, t0)(38)

≤ c̄1(n)e
c̄2(n)(K+ad2(x0,o)+a+b)k

Vol(Bx0
( 1√

k
))

Ck−1k2(k−1)

∫
Bx0 (

√
k)×[t0−1,t0]

u2dvdt.

By mean value theorem, there exists ξ ∈ (t0 − 1, t0) such that∫
Bx0

(
√
k)×[t0−1,t0]

u2dvdt =

∫
Bx0

(
√
k)

u2(x, ξ)dv(39)

≤

(∫
Bx0

(
√
k)

|u|p(x, ξ)dv

) 2
p

Vol(Bx0
(
√
k))1−

2
p

≤ L2 Vol(Bx0
(
√
k))1−

2
p
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for p ≥ 2, where we used Hölder inequality in the second line and in the last
line we used the assumption (17).

By volume comparison theorem (22) and k ≥ 1, we have

Vol(Bx0
(
√
k))1−

2
p

Vol(Bx0
( 1√

k
))

=
Vol(Bx0

(
√
k))Vol(Bx0

(
√
k))−

2
p

Vol(Bx0
( 1√

k
))

(40)

≤ (k)ne
K
6 k+12ad2(x0,o)+108ak+6b Vol(Bx0

(1))−
2
p .

To get a lower bound of Vol(Bx0
(1)), we use the volume comparison theorem

(22) again, then

Vol(Bo(1))(41)

≤ Vol(Bx0
(d(x0, o) + 1))

≤ Vol(Bx0
(1))(d(x0, o) + 1)ne

K
6 [(d(x0,o)+1)2−1]+6 sup

Bx0 (3d(x0,o)+3)

|f |

≤ Vol(Bx0(1))e
nd(x0,o)+

K
6 (d2(x0,o)+2d(x0,o))+6 sup

Bo(4d(x0,o)+3)

|f |

≤ Vol(Bx0(1))e
(n+K

2 )d2(x0,o)+
1
4n+

K
12+6(32ad2(x0,o)+18a+b).

Combining (41), (40), (39) with (38), we arrive at

|∂k−1
t u(x0, t0)| ≤ Ak

6k
k−1eA7d

2(x0,o) Vol(Bo(1))
− 1

pL

for all integers k ≥ 1. Here A6 and A7 are two positive constants depending
on n,K, a, b, p and n, a,K, p, respectively. □
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