
Bull. Korean Math. Soc. 60 (2023), No. 6, pp. 1697–1704

https://doi.org/10.4134/BKMS.b220859

pISSN: 1015-8634 / eISSN: 2234-3016

SINGULARITY FORMATION FOR A NONLINEAR

VARIATIONAL SINE-GORDON EQUATION IN A

MULTIDIMENSIONAL SPACE

Fengmei Qin, Kyungwoo Song, and Qin Wang

Abstract. We study a multidimensional nonlinear variational sine-Gor-
don equation, which can be used to describe long waves on a dipole chain

in the continuum limit. By using the method of characteristics, we show

that a solution of a nonlinear variational sine-Gordon equation with cer-
tain initial data in a multidimensional space has a singularity in finite

time.

1. Introduction

The multidimensional nonlinear variational sine-Gordon equation is

(1.1) utt − c(u)∇ · (c(u)∇u) + ω2

2
sin(2u) = 0,

where ω is a constant. Here the wave speed c(u) > 0 satisfies

(1.2) c2(u) = a cos2 u+ b sin2 u

for some constants a > 0 and b > 0. If a = b, then the equation (1.1) reduces to
the multidimensional nonlinear Klein-Gordon equation. In fact, this equation
originates from the study of long waves on a dipole chain in the continuum
limit which occurs in an anisotropic system [16]. The wave in a massive liquid
crystal director field is the example of the system as well. The equation (1.1)
can be regarded as the sine-Gordon version of the nonlinear variational wave
equation

utt − c(u)∇ · (c(u)∇u) = 0

which is used in the theory of nematic liquid crystals. Refer to [1–5,8–11,13–15]
for more information and mathematical results on the nonlinear variational
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wave equation and its sine-Gordon version. In particular, singularity of solu-
tions were studied in [6, 7, 12].

In this paper we are concerned with the singularity formation of smooth
solutions for the multidimensional nonlinear variational sine-Gordon equations.
Let u = u(t, r) and r = |x|, where x = (x1, . . . , xl). Then (1.1) transforms into

(1.3) utt − c(u)(c(u)ur)r −
(l − 1)c2(u)ur

r
+
ω2

2
sin(2u) = 0.

The wave speed c(·) ∈ C2 is assumed to satisfy

(1.4) 0 < c0 ≤ c(·) ≤ c1, |c′(·)| ≤ c1

for some constants c0 > 0 and c1 > 0.
We notice that a constant solution of (1.3) becomes a critical point of c(·)

which causes some difficulty in using the characteristic method employed in
[6, 7] for the singularity formation. Thus we have to find another type of
solutions to make use of the characteristic method. In this paper, we overcome
the difficulty by finding a proper function that is not a critical point of the
wave speed. In fact, it is known that there exists a unique solution y = Y (t),
which is a spatial independent solution of (1.3), for a second order differential
equation

d2y

dt2
+

1

2
ω2 sin(2y(t)) = 0

with the data

y(0) = k0 and
dy

dt
(0) = 0.

Then Y (t) ≈ k0 cos(ωt) for sufficiently small 0 < k0 ≪ 1, 0 < Y (t) ≤ k0 and
c′(k0) > 0 for a certain time period. Let such a time period be [0, t0). Let us
define

c′(Y (0))

4
=
c′(k0)

4
:= c2.

Let us state the singularity formation which is the main result of the paper.

Theorem 1.1 (Main theorem). Let us assume that (1.3) with initial data

(1.5)

{
u(0, r) = Y (0) + εψ

(
r−r0

ε

)
,

ut(0, r) = (−c(u(0, r)) + ε)ur(0, r)

has a smooth solution u(t, r) ∈ C1([0, T ) × R+). Here ε and r0 are positive
constants to be determined. If c′(k0) > 0, and ψ satisfies

(1.6) ψ(·) ∈ C1
c ((−1, 1)), ψ ̸≡ 0, and ψ′(0) < −2max

{ 3

2c0rd0
,
16c213

d

r0c0c2

}
,

where d = l−1
2 > 0, then T <∞.
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2. The proof of main theorem

The purpose of this section is to establish the singularity formation of (1.1).
We prove Theorem 1.1 by using the method of [6,7]. More precisely, by deriv-
ing the energy equation of the Riemann variables, we show that the blow-up
result for the equation (1.1) occurs at a certain finite time by the characteristic
method.

Let us define d = l−1
2 > 0 and take r0 small enough so that r0/c1 ≪ t0. Let

us introduce new variables

U := (ut + c(u)ur)r
d, S := (ut − c(u)ur)r

d,(2.1)

which yields that

ut =
U + S

2rd
, ur =

U − S

2c(u)rd
.

Equation (1.3) transforms into the system of equations for U and S:
Ut − c(u)Ur = c′

4crd
(U2 − S2)− dc

r S − rdω2 sin(2u)
2 ,

St + c(u)Sr = c′

4crd
(S2 − U2) + dc

r U − rdω2 sin(2u)
2 .

(2.2)

From (2.2) we can obtain the following equation of conservative form

∂

∂t
(U2 + S2 + 2r2dω2 sin2 u) +

∂

∂r
[c(u)(S2 − U2)] = 0.(2.3)

According to (1.5), the initial data for the Riemann variables are given by

U(0, r) = εrdur(0, r), S(0, r) = (−2c
(
u(0, r)

)
+ ε)rdur(0, r).(2.4)

As a consequence, the blow-up of the smooth solutions to Cauchy problem (1.3)
with (1.5) is transformed into the blow-up of the smooth solution to (2.2) with
(2.4).

Next, let us introduce an energy function which is uniformly bounded by its
initial energy. For the time being, let ε < 3

4r0. From (1.6) and (2.4) one has

U(0, r) = 0 = S(0, r)

for all r ∈
[
0,∞) \ [r0 − ε, r0 + ε

]
. Let us define the energy function E(t) as

follows:

E(t) =

∫ +∞

0

[
U2(t, r) + S2(t, r) + 2r2dω2 sin2 u(t, r)

]
dr.(2.5)

From integration (2.3) on t, we notice that E is time-independent, which implies
E(t) = E(0). Furthermore, we can obtain

E(0) =

∫ +∞

0

(
U2(0, r) + S2(0, r) + 2r2dω2 sin2 u(0, r)

)
dr

=

∫ r0+ε

r0−ε

{[
ε2+(ε− 2c(u(0, r)))2

](
ψ′(

r − r0
ε

)
)2

+2ω2 sin2 u(0, r)
}
r2ddr.
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Then

E(0) ≤ (2r0)
2d
{
4ω2ε+

(
ε2 + (2c1 + ε)2

) ∫ r0+ε

r0−ε

(
ψ′(

r − r0
ε

)
)2

dr
}

≤
{
4ω2 +

[
1 + (2c1 + 1)2

] ∫ 1

−1

(ψ′(z))2dz
}
(2r0)

2dε :=Mr2d0 ε(2.6)

for some positive constant M .
Let (r1, 0) and (r2, 0) be two points with 0 < r1 < r2. We define two

characteristic curves passing through them, respectively. One is a positive
characteristic curve r+(t) emitting from (r1, 0) and the other is a negative
characteristic curve r−(t) emitting from (r2, 0) as follows:

dr+(t)

dt
= c

(
u
(
t, r+(t)

))
, r+(0) = r1,

and
dr−(t)

dt
= −c

(
u
(
t, r−(t)

))
, r−(0) = r2.

From (1.4), let us choose r1 and r2 so that

r2 − r1 ≤
2c0

(
r0 − ε

)
c1

.

Then it follows that two characteristic curves r+(t) and r−(t) will intersect at
the point (rm, tm) with r1 < rm < r2 and tm < r0−ε

c1
. Applying the Green’s

formula for equation (2.3) to a region enclosed by the characteristic curves
r = r±(t) and r-axis which is depicted in Figure 1, we have∫ rm

r1

(U2(t+(r), r) + r2dω2 sin2 u(t+(r), r))dr

+

∫ r2

rm

(S2(t−(r), r) + r2dω2 sin2 u(t−(r), r))dr

=
1

2

∫ r2

r1

[
U2(0, r) + S2(0, r) + 2r2dω2 sin2 u(0, r)

]
dr ≤Mr2d0 ε(2.7)

by the energy estimate (2.6).
Let r = r̂(t) with

dr̂(t)

dt
= c

(
u
(
t, r̂(t)

))
, r̂(0) = r0 (r1 < r0 < r2)

be another positive characteristic curve starting from (r0, 0). We will show that
c′(u) is always positive on the curve r = r̂(t) if ε is sufficiently small. Let us
define ∂1 := ∂t + c(u)∂r. From (2.1), one obtain

∂1u
(
t, r̂(t)

)
=
U(t, r̂(t))

r̂d(t)
.(2.8)
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Figure 1. The region bounded by two characteristics

If we integrate (2.8) along the characteristic from 0 to t with t < r0−ε
c1

and use

(2.7), then it follows that∣∣u(t, r̂(t))− u(0, r0)
∣∣ ≤ ∫ t

0

|U(v, r)|
r̂d(v)

dv ≤
√
t
(∫ t

0

(U(v, r̂(v))

r̂d(v)

)2

dv
) 1

2

≤
√
r0 − ε

rd0
√
c1c0

(∫ r

r0

U2(t̂(s), s)ds

) 1
2

≤

√
M(r0 − ε)

c1c0

√
ε.

From the smoothness of c(·), there exists ε0 small enough such that for any
ε ∈ (0, ε0) it follows that on the curve r = r̂(t)

0 < c2 =
c′(k0)

4
≤
c′
(
u
(
0, r(0)

))
2

≤ c′
(
u
(
t, r̂(t)

))
.(2.9)

We now prove that the solutions of (2.2) can blow up for the given initial
condition (2.4), namely, S(t, r̂(t)) becomes infinite at finite time before t =
r0−ε
c1

. First, let us take small enough r0 > 0 so that(c1M
4c20

+
3d

2c1
ω2

)
r1+d
0 <

1

3
, r2d0 ≤ c2c

2
0

16c13d(c21M + 2c203
dω2)

.(2.10)

Furthermore, let us choose

ε < min
{
ε0, c0,

3

4
r0,

r
1
2−d
0

4d

√
c0
c1M

,
(r0
c0

) 3
2

√
c1M

4d

}
(2.11)
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and

S(0, r0) =
(
− 2c

(
u(0, r0)

)
+ ε

)
rd0ψ

′(0)

> 2c0r
d
0 max

{ 3

2c0rd0
,
16c213

d

r0c0c2

}
> max

{
3,

32c21(3r0)
d

(r0 − ε)c2

}
.(2.12)

Lemma 2.1. Let S(0, r0) satisfy (2.12). Then S
(
t, r̂(t)

)
goes to infinity as t

approaches some t∗, which is less than r0−ε
c1

, for sufficiently small ε in (2.11).

Proof. First, let us show that S
(
t, r̂(t)

)
> 1 when S

(
t, r̂(t)

)
is smooth in

[0, r0−ε
c1

). Let us assume on the contrary. That is, there exists τ ∈ (0, r0−ε
c1

)

such that S
(
t, r̂(t)

)
belongs to C1([0, τ ]), S

(
t, r̂(t)

)
> 1 for all t ∈

[
0, τ

)
, and

S
(
τ, r̂(τ)

)
= 1. From (1.4), (2.1) and (2.9), one has

∂1

( 1

S

)
= − 1

S2

[ c′

4crd
(S2 − U2) +

dc

r
U − rd

2
ω2 sin(2u)

]
≤ − c′

4crd
+

1

S2

( c′

4crd
U2 +

dc

r
|U |+ rd

2
ω2 sin(2u)

)
≤ − c2

4c1(3r0)d
+

1

S2

( c2
4c0rd0

U2 +
dc1
r0

|U |+ (3r0)
dω2

2

)
.(2.13)

If we integrate (2.13) from 0 to τ along the positive characteristic r = r̂(t) with
τ < r0−ε

c1
, then it follows that

1

S
(
τ, r̂(τ)

) ≤ 1

S(0, r0)
+

∫ τ

0

1

S2

( c2
4c0rd0

U2 +
dc1
r0

|U |+ (3r0)
dω2

2

)
dt

≤ 1

S(0, r0)
+

c1
4c20r

d
0

∫ r̂

r0

U2dr +

√
c1d2

c0r0

(∫ r̂

r0

U2dr
) 1

2

+
(3r0)

dω2

2
· r0
c1

≤ 1

S(0, r0)
+

c1
4c20

Mrd0ε+ d

√
c1
c0r0

√
Mεrd0 +

3d

2c1
ω2r1+d

0

≤ 1

S(0, r0)
+

c1
4c20

Mr1+d
0 +

√
c1M

c0r0
drd0ε+

3d

2c1
ω2r1+d

0

≤ 2

3
+

√
c1M

c0r0
drd0ε < 1,

which contradicts to S
(
τ, r̂(τ)

)
= 1. In fact, the last inequality comes from

the choice of r0 in (2.10) and ε in (2.11). Therefore, S
(
t, r̂(t)

)
> 1 holds for

0 ≤ t < r0−ε
c1

.

Finally, let us prove that S(t, r̂(t)) becomes infinite at finite time before
t = r0−ε

c1
. Integration of (2.13) from 0 to t with t < r0−ε

c1
, which together with



SINGULARITY OF NONLINEAR VARIATIONAL SINE-GORDON EQUATIONS 1703

the choice of S(0, r0) in (2.12) yields

1

S
(
t, r̂(t)

) ≤ 1

S(0, r0)
−
∫ t

0

c2
4c1(3r0)d

dt

+

∫ t

0

1

S2

( c2
4c0rd0

U2 +
dc1
r0

|U |+ (3r0)
dω2

2

)
dt

≤ 1

S(0, r0)
− c2

4c1(3r0)d
t+

(c1M
4c20

+
3dω2

2c1

)
r1+d
0 + dr

d− 1
2

0

√
c1M

c0
ε

≤ c2
4c1(3r0)d

(r0 − ε

2c1
− t+

r0
8c1

)
.(2.14)

We find that there exists t∗ satisfying

t∗ =
r0 − ε

2c1
+

r0
8c1

=
5r0 − 4ε

8c1
<
r0 − ε

c1

and
1

S
(
t, r̂(t)

) → 0

as t→ t∗ by taking r0 > 4ε/3. Hence S(t, r̂(t)) → ∞ as t→ t∗. □

According to the above argument, we show that the singularity of the smooth
solution u occurs at some point, that is ∇u→ ∞ as t→ t∗ for some t∗ < r0−ε

c1
.

Therefore we complete the proof of the Main theorem.

References

[1] G. Al̀ı and J. K. Hunter, Orientation waves in a director field with rotational inertia,

Kinet. Relat. Models 2 (2009), no. 1, 1–37. https://doi.org/10.3934/krm.2009.2.1
[2] A. Bressan and G. Chen, Generic regularity of conservative solutions to a nonlinear
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