DOI QR코드

DOI QR Code

Advances in Non-Interference Sensing for Wearable Sensors: Selectively Detecting Multi-Signals from Pressure, Strain, and Temperature

  • Byung Ku Jung (Department of Materials Science and Engineering, Korea University) ;
  • Yoonji Yang (Department of Materials Science and Engineering, Korea University) ;
  • Soong Ju Oh (Department of Materials Science and Engineering, Korea University)
  • Received : 2023.11.03
  • Accepted : 2023.11.28
  • Published : 2023.11.30

Abstract

Wearable sensors designed for strain, pressure, and temperature measurements are essential for monitoring human movements, health status, physiological data, and responses to external stimuli. Notably, recent research has led to the development of high-performance wearable sensors using innovative materials and device structures that exhibit ultra-high sensitivity compared with their commercial counterparts. However, the quest for accurate sensing has identified a critical challenge. Specifically, the mechanical flexibility of the substrates in wearable sensors can introduce interference signals, particularly when subjected to varying external stimuli and environmental conditions, potentially resulting in signal crosstalk and compromised data fidelity. Consequently, the pursuit of non-interference sensing technology is pivotal for enabling independent measurements of concurrent input signals related to strain, pressure, and temperature, ensuring precise signal acquisition. In this comprehensive review, we present an overview of the recent advances in noninterference sensing strategies. We explore various fabrication methods for sensing strain, pressure, and temperature, emphasizing the use of hybrid composite materials with distinct mechanical properties. This review contributes to the understanding of critical developments in wearable sensor technology that are vital for their ongoing application and evolution in numerous fields.

Keywords

Acknowledgement

B. K. J. and Y. Y. contributed equally to this work. This research was supported by (2022R1A2C4001517) Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT, and Future Planning.

References

  1. T. Xu, W. Wang, X. Bian, X. Wang, X. Wang, J. K. Luo, and S. Dong, "High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape", Sci. Rep., Vol. 5, No. 1, pp. 1-9, 2015. https://doi.org/10.1038/srep12997
  2. A. B. Vallbo, K. E. Hagbarth, H. E. Torebjork, and B. G. Wallin, "Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves", Physiol. Rev., Vol. 59, No. 4, pp. 919-957, 1979. https://doi.org/10.1152/physrev.1979.59.4.919
  3. R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y. S. Kim, W.-H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, "Ultrathin conformal devices for precise and continuous thermal characterization of human skin", Nat. Mater., Vol. 12, No. 10, pp. 938-944, 2013. https://doi.org/10.1038/nmat3755
  4. J. Tegin and J. Wikander, "Tactile sensing in intelligent robotic manipulation - A review", Ind. Rob., Vol. 32, No. 1, pp. 64-70, 2005. https://doi.org/10.1108/01439910510573318
  5. R. S. Dahiya, P. Mittendorfer, M. Valle, G. Cheng, and V. J. Lumelsky, "Directions toward effective utilization of tactile skin: A review", IEEE Sens. J., Vol. 13, No. 11, pp. 4121-4138, 2013. https://doi.org/10.1109/JSEN.2013.2279056
  6. M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, "25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress", Adv. Mater., Vol. 25, No. 42, pp. 5997-6038, 2013. https://doi.org/10.1002/adma.201302240
  7. Y. Lee, J. Park, A. Choe, S. Cho, J. Kim, and H. Ko, "Mimicking Human and Biological Skins for Multifunctional Skin Electronics", Adv. Funct. Mater., Vol. 30, No. 20, pp. 1904523(1)-1904523(32), 2020. https://doi.org/10.1002/adfm.201904523
  8. J. Ma, P. Wang, H. Chen, S. Bao, W. Chen, and H. Lu, "Highly Sensitive and Large-Range Strain Sensor with a Self-Compensated Two-Order Structure for Human Motion Detection", ACS Appl. Mater. Interfaces, Vol. 11, No. 8, pp. 8527-8536, 2019. https://doi.org/10.1021/acsami.8b20902
  9. A. Koivikko, V. Lampinen, M. Pihlajamaki, K. Yiannacou, V. Sharma, and V. Sariola, "Integrated stretchable pneumatic strain gauges for electronics-free soft robots", Commun. Eng., Vol. 1, No. 1, pp. 14(1)-14(10), 2022. https://doi.org/10.1038/s44172-022-00005-8
  10. K. Xu, Y. Lu, S. Honda, T. Arie, S. Akita, and K. Takei, "Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics", J. Mater. Chem. C, Vol. 7, No. 31, pp. 9609-9617, 2019. https://doi.org/10.1039/C9TC01874C
  11. R. Nur, N. Matsuhisa, Z. Jiang, M. O. G. Nayeem, T. Yokota, and T. Someya, "A Highly Sensitive Capacitive-type Strain Sensor Using Wrinkled Ultrathin Gold Films", Nano Lett., Vol. 18, No. 9, pp. 5610-5617, 2018. https://doi.org/10.1021/acs.nanolett.8b02088
  12. Q. Yu, R. Ge, J. Wen, T. Du, J. Zhai, S. Liu, L. Wang, and Y. Qin, "Highly sensitive strain sensors based on piezotronic tunneling junction", Nat. Commun., Vol. 13, No. 1, pp. 778(1)-778(9), 2022. https://doi.org/10.1038/s41467-022-28443-0
  13. J. Bang, W. S. Lee, B. Park, H. Joh, H.K. Woo, S. Jeon, J. Ahn, C. Jeong, T. il Kim, and S. J. Oh, "Highly Sensitive Temperature Sensor: Ligand-Treated Ag Nanocrystal Thin Films on PDMS with Thermal Expansion Strategy", Adv. Funct. Mater., Vol. 29, No. 32, pp. 1-8, 2019. https://doi.org/10.1002/adfm.201903047
  14. S. C. B. Mannsfeld, B. C-K. Tee, R. M. Stoltenberg, C. V. H-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers", Nat. Mater., Vol. 9, No. 10, pp. 859-864, 2010. https://doi.org/10.1038/nmat2834
  15. J. Ahn, S. Jeon, W. S. Lee, H. K. Woo, D. Kim, J. Bang, and S. J. Oh, "Chemical Effect of Halide Ligands on the Electromechanical Properties of Ag Nanocrystal Thin Films for Wearable Sensors", J. Phys. Chem. C, Vol. 123, No. 29, pp. 18087-18094, 2019. https://doi.org/10.1021/acs.jpcc.9b04880
  16. J. Ahn, S. Jeon, H. K. Woo, J. Bang, Y. M. Lee, S. J. Neuhaus, W. S. Lee, T. Park, S. Y. Lee, B. K. Jung, H. Joh, M. Seong, J. H. Choi, H. G. Yoon, C. R. Kagan, and S. J. Oh, "Ink-Lithography for Property Engineering and Patterning of Nanocrystal Thin Films", ACS Nano, Vol. 15, No. 10, pp. 15667-15675, 2021. https://doi.org/10.1021/acsnano.1c04772
  17. H. Joh, W. S. Lee, M. S. Kang, M. Seong, H. Kim, J. Bang, S. W. Lee, M. A. Hossain, and S. J. Oh, "Surface Design of Nanocrystals for High-Performance Multifunctional Sensors in Wearable and Attachable Electronics", Chem. Mater., Vol. 31, No. 2, pp. 436-444, 2019. https://doi.org/10.1021/acs.chemmater.8b03914
  18. H. Kim, S. W. Lee, H. Joh, M. Seong, W. S. Lee, M. S. Kang, J. B. Pyo, and S. J. Oh, "Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors", ACS Appl. Mater. Interfaces, Vol. 10, No. 1, pp. 1389-1398, 2018. https://doi.org/10.1021/acsami.7b15566
  19. A. Kaidarova, M. A. Khan, M. Marengo, L. Swanepoel, A. Przybysz, C. Muller, A. Fahlman, U. Buttner, N. R. Geraldi, R. P. Wilson, C. M. Duarte, and J. Kosel, "Wearable multifunctional printed graphene sensors", Npj Flex. Electron., Vol. 3, No. 1, pp. 15(1)-15(10), 2019. https://doi.org/10.1038/s41528-018-0045-x
  20. Y. Qiao, X. Li, T. Hirtz, G. Deng, Y. Wei, M. Li, S. Ji, Q. Wu, J. Jian, F. Wu, Y. Shen, H. Tian, Y. Yang, and T. L. Ren, "Graphene-based wearable sensors", Nanoscale, Vol. 11, No. 41, pp. 18923-18945, 2019. https://doi.org/10.1039/C9NR05532K
  21. Q. Zheng, J. hun Lee, X. Shen, X. Chen, and J. K. Kim, "Graphene-based wearable piezoresistive physical sensors", Mater. Today, Vol. 36, pp. 158-179, 2020. https://doi.org/10.1016/j.mattod.2019.12.004
  22. H. J. Kim, A. Thukral, and C. Yu, "Highly sensitive and very stretchable strain sensor based on a rubbery semiconductor", ACS Appl. Mater. Interfaces, Vol. 10, No. 5, pp. 5000-5006, 2018. https://doi.org/10.1021/acsami.7b17709
  23. Y. F. Wang, T. Sekine, Y. Takeda, J. Hong, A. Yoshida, H. Matsui, D. Kumaki, T. Nishikawa, T. Shiba, T. Sunaga, and S. Tokito, "Printed Strain Sensor with High Sensitivity and Wide Working Range Using a Novel Brittle-Stretchable Conductive Network", ACS Appl. Mater. Interfaces, Vol. 12, No. 31, pp. 35282-35290, 2020. https://doi.org/10.1021/acsami.0c09590
  24. X. Ren, P. K. L. Chan, J. Lu, B. Huang, and D. C. W. Leung, "High dynamic range organic temperature sensor", Adv. Mater., Vol. 25, No. 9, pp. 1291-1295, 2013. https://doi.org/10.1002/adma.201204396
  25. X. Nan, Z. Xu, X. Cao, J. Hao, X. Wang, Q. Duan, G. Wu, L. Hu, Y. Zhao, Z. Yang, and L. Gao, "A Review of Epidermal Flexible Pressure Sensing Arrays", Biosensors, Vol. 13, No. 6, pp. 656(1)-656(55), 2023.
  26. J. Lin, R. Fu, X. Zhong, P. Yu, G. Tan, W. Li, H. Zhang, Y. Li, L. Zhou, and C. Ning, "Wearable sensors and devices for real-time cardiovascular disease monitoring", Cell Rep. Phys. Sci., Vol. 2, No. 8, pp. 100541(1)-100541(25), 2021.
  27. H. Wu, Q. Liu, W. Du, C. Li, and G. Shi, "Transparent Polymeric Strain Sensors for Monitoring Vital Signs and beyond", ACS Appl. Mater. Interfaces., Vol. 10, No. 4, pp. 3895-3901, 2018. https://doi.org/10.1021/acsami.7b19014
  28. C. Wang, J. Zhao, C. Ma, J. Sun, L. Tian, X. Li, F. Li, X. Han, C. Liu, C. Shen, L. Dong, J. Yang, and C. Pan, "Detection of non-joint areas tiny strain and anti-interference voice recognition by micro-cracked metal thin film", Nano Energy., Vol. 34, pp. 578-585, 2017. https://doi.org/10.1016/j.nanoen.2017.02.050
  29. C. Berger, R. Phillips, A. Centeno, A. Zurutuza, and A. Vijayaraghavan, "Capacitive pressure sensing with suspended graphene-polymer heterostructure membranes", Nanoscale, Vol. 9, No. 44, pp. 17439-17449, 2017. https://doi.org/10.1039/C7NR04621A
  30. Q. Zheng, J. hun Lee, X. Shen, X. Chen, and J. K. Kim, "Graphene-based wearable piezoresistive physical sensors", Mater. Today, Vol. 36, pp. 158-179, 2020. https://doi.org/10.1016/j.mattod.2019.12.004
  31. Y. Zhao, M. Ren, Y. Shang, J. Li, S. Wang, W. Zhai, G. Zheng, K. Dai, C. Liu, and C. Shen, "Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins", Compos. Sci. Technol., Vol. 200, p. 108448, 2020.
  32. J. Lin, R. Fu, X. Zhong, P. Yu, G. Tan, W. Li, H. Zhang, Y. Li, L. Zhou, and C. Ning, "Wearable sensors and devices for real-time cardiovascular disease monitoring", Cell Rep. Phys. Sci., Vol. 2, No. 8, pp. 100541(1)-100541(25), 2021.
  33. Y. Qiao, X. Li, T. Hirtz, G. Deng, Y. Wei, M. Li, S. Ji, Q. Wu, J. Jian, F. Wu, Y. Shen, H. Tian, Y. Yang, and T. L. Ren, "Graphene-based wearable sensors", Nanoscale, Vol. 11, No. 41, pp. 18923-18945, 2019. https://doi.org/10.1039/C9NR05532K
  34. H. Yu, L. Yu, X. Qi, J. Cui, K. Wu, Y. Liu, L. Chen, and X. Li, "Versatile chewed gum composites with liquid metal for strain sensing, electromagnetic interference shielding and flexible electronics", J. Mater. Chem. C, Vol. 11, No. 31, pp. 10455-10463, 2023. https://doi.org/10.1039/D3TC02067C
  35. X. Nan, Z. Xu, X. Cao, J. Hao, X. Wang, Q. Duan, G. Wu, L. Hu, Y. Zhao, Z. Yang, and L. Gao, "A Review of Epidermal Flexible Pressure Sensing Arrays", Biosensors, Vol. 13, No. 6, pp. 1-55, 2023. https://doi.org/10.3390/bios13060656
  36. H. Xu, W. Zheng, Y. Wang, D. Xu, N. Zhao, Y. Qin, Y. Yuan, Z. Fan, X. Nan, Q. Duan, W. Wang, Y. Lu, and L. Gao, "Flexible tensile strain-pressure sensor with an off-axis deformation-insensitivity", Nano Energy, Vol. 99, p. 107384, 2022.
  37. J. Li, Z. Liao, T. Liang, S. Zhang, B. Tang, X. Fu, G. Li, and Y. Huang, "High sensitivity, fast response and anti-interference crack-based reduced graphene oxide strain sensor for pig acoustic recognition", Comput. Electron. Agric., Vol. 200, p. 107267, 2022.
  38. Z. Zhou, W. Zhang, J. Zhang, Y. Zhang, X. Yin, and B. He, "Flexible and self-adhesive strain sensor based on GNSs/MWCNTs coated stretchable fabric for gesture monitoring and recognition", Sens. Actuators A Phys., Vol. 349, p. 114004, 2023.
  39. H. Yu, L. Yu, X. Qi, J. Cui, K. Wu, Y. Liu, L. Chen, and X. Li, "Versatile chewed gum composites with liquid metal for strain sensing, electromagnetic interference shielding and flexible electronics", J. Mater. Chem. C, Vol. 11, No. 31, pp. 10455-10463, 2023. https://doi.org/10.1039/D3TC02067C
  40. L. Yang, J. Ma, W. Zhong, Q. Liu, M. Li, W. Wang, Y. Wu, Y. Wang, X. Liu, and D. Wang, "Highly accurate fabric piezoresistive sensor with anti-interference from both high humidity and sweat based on hydrophobic non-fluoride titanium dioxide nanoparticles", J. Mater. Chem. C, Vol. 9, No. 15, pp. 5217-5226, 2021. https://doi.org/10.1039/D0TC05881E
  41. N. Kang, S. Zhang, F. Tang, J. Wang, and L. Li, "Silver-Hydrogel/PDMS film with high mechanical strength for anti-interference strain sensor", Colloids. Surf. A Physicochem. Eng. Asp., Vol. 654, p. 130071, 2022.
  42. Y. Huang, X. Zeng, W. Wang, X. Guo, C. Hao, W. Pan, P. Liu, C. Liu, Y. Ma, Y. Zhang, and X. Yang, "High-resolution flexible temperature sensor based graphite-filled polyethylene oxide and polyvinylidene fluoride composites for body temperature monitoring", Sens. Actuators A Phys., Vol. 278, pp. 1-10, 2018. https://doi.org/10.1016/j.sna.2018.05.024
  43. R. Matsuda, S. Mizuguchi, F. Nakamura, T. Endo, Y. Isoda, G. Inamori, and H. Ota, "Highly stretchable sensing array for independent detection of pressure and strain exploiting structural and resistive control", Sci. Rep., Vol. 10, No. 1, p. 12666, 2020.
  44. Y. K. Choi, T. H. Kim, J. H. Song, B. K. Jung, W. Kim, J. H. Bae, H. J. Choi, J. Kwak, J. W. Shim, and S. J. Oh, "Charge transport transition of PEDOT:PSS thin films for temperature-insensitive wearable strain sensors", Nanoscale, Vol. 15, No. 17, pp. 7980-7990, 2023.
  45. H. Xu, W. Zheng, Y. Wang, D. Xu, N. Zhao, Y. Qin, Y. Yuan, Z. Fan, X. Nan, Q. Duan, W. Wang, Y. Lu, and L. Gao, "Flexible tensile strain-pressure sensor with an off-axis deformation-insensitivity", Nano Energy, Vol. 99, p. 107384, 2022.
  46. Y. Li, R. Wang, G. E. Wang, S. Feng, W. Shi, Y. Cheng, L. Shi, K. Fu, and J. Sun, "Mutually Noninterfering Flexible Pressure-Temperature Dual-Modal Sensors Based on Conductive Metal-Organic Framework for Electronic Skin", ACS Nano, Vol. 16, No. 1, pp. 473-484, 2022. https://doi.org/10.1021/acsnano.1c07388
  47. G. Y. Bae, J. T. Han, G. Lee, S. Lee, S. W. Kim, S. Park, J. Kwon, S. Jung, and K. Cho, "Pressure/Temperature Sensing Bimodal Electronic Skin with Stimulus Discriminability and Linear Sensitivity", Advanced Materials. Vol. 30, No. 43, pp. 1803388(1)-1803388(9), 2018.
  48. T. Park, H. K. Woo, B. K. Jung, B. Park, J. Bang, W. Kim, S. Jeon, J. Ahn, Y. Lee, Y. M. Lee, T. I. Kim, and S. J. Oh, "Noninterference Wearable Strain Sensor: Near-Zero Temperature Coefficient of Resistance Nanoparticle Arrays with Thermal Expansion and Transport Engineering", ACS Nano, Vol. 15, No. 5, pp. 8120-8129, 2021.