DOI QR코드

DOI QR Code

Electrochemical Monitoring of NADH Redox with NPQD-modified Electrodes for Cell Viability Assessment

  • JuKyung Lee (Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI)) ;
  • Hye Bin Park (Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI)) ;
  • Chae Won Seo (Department of Medical IT Convergence, Kumoh National Institute of Technology) ;
  • Chae Won Seo (Department of Medical IT Convergence, Kumoh National Institute of Technology) ;
  • SangHee Kim (Department of Medical IT Convergence, Kumoh National Institute of Technology)
  • Received : 2023.10.31
  • Accepted : 2023.11.10
  • Published : 2023.11.30

Abstract

There is increasing interest in the rapid and highly sensitive monitoring of cell viability in biological and toxicological research. Conventional methods depend on optical assays using Water Soluble Tetrazolium-8 (WST-8) or 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, which requires a large volume of samples and special instruments, necessitating shipment of clinical samples to laboratories. This paper reports on the development of a rapid and sensitive electrochemical (EC) sensor using screen printed electrode (SPE) and surface modification using 4'-mercapto-N-phenylquinone diamine (4'-NPQD), as double electron mediators, for monitoring cell viability via the measurement of nicotinamide adenine dinucleotide (NADH). We used the sensor to observe the viability of MCF-7 and doxorubicin (Dox)-treated cells. The oxidation current of NADH was measured via chronoamperometry (CA), and the EC results showed a good linear relationship when compared with NADH quantification using WST-8 assay. The analysis time was only 10 s and limit of detection (LOD) of NADH was 1.78 µM. Our EC method has the potential to replace conventional WST assays for cell viability and cytotoxicity experiments.

Keywords

Acknowledgement

This research was supported by Kumoh National Institute of Technology(2022~2023).

References

  1. R. D. Evans and L. C. Heather, "Human metabolism: pathways and clinical aspects", Surgery (Oxford), Vol. 40, No. 2, pp. 219-226, 2022. https://doi.org/10.1016/j.mpsur.2022.01.004
  2. K. N. Frayn, Metabolic regulation: a human perspective, Oxford, John Wiley and Sons, UK, pp. 27-130, 2009.
  3. B. Pelzmann, S. Hallstrom, P. Schaffer, P. Lang, K. Nadlinger, G. D. Birkmayer, K. Vrecko, G. Reibnegger, and B. Koidl, "NADH supplementation decreases pinacidil-primed IK(ATP) in ventricular cardiomyocytes by increasing intracellular ATP", Br. J. Pharmacol., Vol. 139, No. 4, pp. 749-754, 2003. https://doi.org/10.1038/sj.bjp.0705300
  4. G. J. Stienen, J. L. Kiers, R. Bottinelli, and C. Reggiani, "Myofibrillar ATPase activity in skinned human skeletal muscle fibres: Fibre type and temperature dependence", J. Physiol., Vol. 493, No. 2, pp. 299-307, 1996. https://doi.org/10.1113/jphysiol.1996.sp021384
  5. C. H. Barlow and B. Chance, "Ischemic areas in perfused rat hearts: Measurement by NADH fluorescence photography", Science, Vol. 193, No. 4256, pp. 909-910, 1976. https://doi.org/10.1126/science.181843
  6. J. D. Enderle, "Biochemical Reactions and Enzyme Kinetics," in Introduction to biomedical engineering, J. D. Enderle and J. D. Bronzino, Eds. Elsevier, Amsterdam, pp. 447-508, 2012.
  7. A. S. Bommarius and B. R. Riebel-Bommarius, Biocatalysis: fundamentals and applications, Oxford, John Wiley and Sons, UK, pp. 43-61, 2004.
  8. S. Immanuel and R. Sivasubramanian, "Electrochemical studies of NADH oxidation on chemically reduced graphene oxide nanosheets modified glassy carbon electrode", Mat Chem Phys, Vol. 249, p. 123015, 2020.
  9. S. Immanuel, R. Sivasubramanian, "Electrochemical reduction of NAD+ on graphene oxide and chemically reduced graphene oxide nanosheets", Mat. Sci. Eng. B, Vol. 262, p. 114705, 2020.
  10. R. Ciriminna and M. Pagliaro, "Green chemistry in the fine chemicals and pharmaceutical industries", Org. Process. Res. Dev., Vol. 17, No. 12, pp. 1479-1484, 2013. https://doi.org/10.1021/op400258a
  11. K. Chamchoy, D. Pakotiprapha, P. Pumirat, U. Leartsakulpanich, and U. Boonyuen, "Application of WST-8 based colorimetric NAD (P) H detection for quantitative dehydrogenase assays", BMC Biochem., Vol. 20, No. 4, pp. 1-14, 2019. https://doi.org/10.1186/s12858-019-0104-5
  12. J. K. Lee, H. N. Suh, S. H. Yoon, K. H. Lee, S. Y. Ahn, H. J. Kim, and S. H. Kim, "Non-destructive monitoring via electrochemical NADH detection in murine cells", Biosensors, Vol. 12, No. 2, p. 107, 2022.
  13. J. Lee, C. T. Bubar, H. G. Moon, J. Kim, A. Busnaina, H. Lee, and S. J. Shefelbine, "Measuring bone biomarker alkaline phosphatase with wafer-scale nanowell array electrodes", ACS Sens., Vol. 3, No. 12, pp. 2709-2715, 2018. https://doi.org/10.1021/acssensors.8b01298
  14. A. Kitani, Y. H. So, and L. L. Miller, "Electrochemical study of the kinetics of NADH being oxidized by diimines derived from diaminobenzenes and diaminopyrimidines", J. Am. Chem. Soc., Vol. 103, No. 25, pp. 7636-7641, 1981. https://doi.org/10.1021/ja00415a036
  15. J. Moiroux and P. J. Elving, "Effects of adsorption, electrode material, and operational variables on the oxidation of dihydronicotinamide adenine dinucleotide at carbon electrodes", Anal. Chem., Vol. 50, No. 8, pp. 1056-1062, 1978. https://doi.org/10.1021/ac50030a015
  16. C. R. Raj and T. Ohsaka, "Electrocatalytic sensing of NADH at an in situ functionalized self-assembled monolayer on gold electrode", Electrochem. Commun., Vol. 3, No. 11, pp. 633-638, 2001. https://doi.org/10.1016/S1388-2481(01)00239-9