DOI QR코드

DOI QR Code

Light Emitting Diode with Multi-step Quantum Well Structure for Sensing Applications

계단형 양자우물 구조가 적용된 센서 광원 용 발광다이오드 소자

  • Seongmin Park (School of Chemical Engineering, Dankook National University) ;
  • Seungjoo Lee (School of Chemical Engineering, Dankook National University) ;
  • Jajeong Woo (School of Chemical Engineering, Dankook National University) ;
  • Yukyung Kim (School of Chemical Engineering, Dankook National University) ;
  • Soohwan Jang (School of Chemical Engineering, Dankook National University)
  • 박성민 (단국대학교 화학공학과) ;
  • 이승주 (단국대학교 화학공학과) ;
  • 우자정 (단국대학교 화학공학과) ;
  • 김유경 (단국대학교 화학공학과) ;
  • 장수환 (단국대학교 화학공학과)
  • Received : 2023.10.30
  • Accepted : 2023.11.10
  • Published : 2023.11.30

Abstract

Electrical and optical characteristics of the GaN-based light-emitting diode (LED) with the improved multi-quantum well (MQW) structure have been studied for light source in bio-sensing systems. Novel GaN/In0.1GaN/In0.2GaN/In0.1GaN/GaN and Al0.1GaN/GaN/In0.2GaN/GaN/Al0.1GaN (MQW) structures were suggested, and their radiative recombination rate, light output power, electroluminescence, and external quantum efficiency were compared with those of the conventional GaN/In0.2GaN/GaN MQW structure using device simulation. The LED with the GaN/In0.1GaN/In0.2GaN/In0.1GaN/GaN MQW structure showed an excellent recombination rate of 5.57 × 1028 cm-3·s-1 that was more than one order improvement over that of the conventional LED. In addition, the efficiency droop was relieved by the suggested stepped MQW structure.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의지원을받아수행된연구이며(No. 2021R1F1A1056647),2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임 (P0020966, 2022년 산업혁신인재성장지원사업).

References

  1. K. S. Hwang, S. K. Kim, and T. S. Kim, "Biosensors: a review", J. Sens. Sci. Technol., Vol. 18, No. 4, pp. 251-262, 2009.  https://doi.org/10.5369/JSST.2009.18.4.251
  2. T. W. Kim and I. K. Park, "Skin-interfaced Wearable Biosensors: A Mini-Review", J. Sens. Sci. Technol., Vol. 31, No. 2, pp. 71-78, 2022.  https://doi.org/10.46670/JSST.2022.31.2.71
  3. P. Damborsky, J. Svitel, and J. Katrlik, "Optical biosensors", Essays. Biochem., Vol. 60, No. 1, pp. 91-100, 2016.  https://doi.org/10.1042/EBC20150010
  4. V. P. Rachim, J. An, Q. N. Pham, and W.-Y. Chung, "RGB-LED-based Optical Camera Communication using Multilevel Variable Pulse Position Modulation for Healthcare Applications", J. Sens. Sci. Technol., Vol. 27, No. 1, pp. 6-12, 2018. 
  5. B. A. Prabowo, A. Purwidyantri, and K.-C. Liu, "Surface plasmon resonance optical sensor: A review on light source technology", Biosensors, Vol. 8, No. 3, pp. 80(1)-80(27), 2018.  https://doi.org/10.3390/bios8030080
  6. T. Arakawa, T. Koshida, T. Gessei, K. Miyajima, D. Takahashi, H. Kudo, K. Yano, and K. Mitsubayashi, "Biosensor for L-phenylalanine based on the optical detection of NADH using a UV light emitting diode", Microchimica Acta, Vol. 173, No. 1-2, pp. 199-205, 2011.  https://doi.org/10.1007/s00604-010-0536-5
  7. A. Wati, R. Rusva, and L. Umar, "Effect of LED Wavelengths and Light-Dark Cycle on Photosynthetic Production of Chlorella Kessleri for Algae-Based Biosensor Optimization", J. Phys. Conf. Ser., Vol. 1351, No. 1, pp. 012003(1)-012003(7), 2019.  https://doi.org/10.1088/1742-6596/1351/1/012003
  8. S. Y. Lee, K.-I. Park, C. Huh, M. Koo, H. G. Yoo, S. Kim, C. S. Ah, G. Y. Sung, and K. J. Lee, "Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications", Nano energy, Vol. 1, No. 1, pp. 145-151, 2012.  https://doi.org/10.1016/j.nanoen.2011.07.001
  9. J.-C. Wang, C.-H. Fang, Y.-F. Wu, W.-J. Chen, D.-C. Kuo, P.-L. Fan, J.-A. Jiang, and T.-E. Nee, "The effect of junction temperature on the optoelectrical properties of InGaN/GaN multiple quantum well light-emitting diodes", J. Lumin., Vol. 132, No. 2, pp. 429-433, 2012.  https://doi.org/10.1016/j.jlumin.2011.09.001
  10. H. C. Lee, J. B. Park, J. W. Bae, P. T. T. Thuy, M. C. Yoo, and G. Y. Yeom, "Effect of the surface texturing shapes fabricated using dry etching on the extraction efficiency of vertical light-emitting diodes", Solid-State Electron., Vol. 52, No. 8, pp. 1193-1196, 2008.  https://doi.org/10.1016/j.sse.2008.05.005
  11. Y.-S. Wang, N.-C. Chen, C.-Y. Lu, and J.-F. Chen, "Optical joint density of states in InGaN/GaN based multiple-quantum-well light-emitting diodes", Physica B: Condens. Matter, Vol. 406, No. 22, pp. 4300-4303, 2011.  https://doi.org/10.1016/j.physb.2011.08.071
  12. B. Beaumont, S. Haffouz, P. Gibart, M. Leroux, Ph. Lorenzini, E. Calleja, and E. Munoz, "Violet GaN based light emitting diodes fabricated by metal organics vapour phase epitaxy", Mater. Sci. Eng. B, Vol. 50, No.1-3, pp. 296-301, 1997.  https://doi.org/10.1016/S0921-5107(97)00193-1
  13. C. Wetzel, M. Zhu, J. Senawiratne, T. Detchprohm, P. D. Persans, L. Lin, E. A. Preble, and D. Hanser, "Light-emitting diode development on polar and non-polar GaN substrates", J. Cryst. Growth, Vol. 310, No. 17, pp. 3987-3991, 2008.  https://doi.org/10.1016/j.jcrysgro.2008.06.028
  14. S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. R. Chen, and J. M. Tsai, "4 00-nm InGaN - GaN and InGaN - AlGaN Multiquantum Well Light-Emitting Diodes", IEEE J. Sel. Top. Quantum Electron., Vol. 8, No. 4, pp. 744-748, 2002.  https://doi.org/10.1109/JSTQE.2002.801677
  15. C. Jia, T. Yu, X. Feng, K. Wang, and G. Zhang, "Performance improvement of GaN-based near-UV LEDs with InGaN/AlGaN superlattices strain relief layer and AlGaN barrier", Superlattices and Microstructures, Vol. 97, pp. 417-423, 2016.  https://doi.org/10.1016/j.spmi.2016.07.001
  16. I. V. Rozhansky and D. A. Zakheim, "Analysis of dependence of electroluminescence efficiency of AlInGaN LED heterostructures on pumping", Phys. Status Solidi C, Vol. 3, No. 6, pp. 2160-2164, 2006.  https://doi.org/10.1002/pssc.200565366
  17. A. Y. Kim, W. Gotz, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun, S. A. Stockman, P. S. Martin, M. R. Krames, R. S. Kern, and F. M. Steranka, "Performance of high-power AlInGaN light emitting diodes", Phys. Status Solidi A, Vol. 188, No. 1, pp. 15-21, 2001.  https://doi.org/10.1002/1521-396X(200111)188:1<15::AID-PSSA15>3.0.CO;2-5
  18. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes", Appl. Phys. Lett., Vol. 91, No. 18, pp. 183507(1)-183507(3), 2007.  https://doi.org/10.1063/1.2800290
  19. Y. C. Shen, G. O. Muller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence", Appl. Phys. Lett., Vol. 91, No. 14, pp. 141101(1)-141101(3), 2007.  https://doi.org/10.1063/1.2785135
  20. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, "Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs", Semiconductors, Vol. 40, No. 5, pp. 605-610, 2006.  https://doi.org/10.1134/S1063782606050162
  21. Y. Yang, X. A. Cao, and C. H. Yan, "Rapid efficiency rolloff in high-quality green light-emitting diodes on freestanding GaN substrates", Appl. Phys. Lett., Vol. 94, No. 4, pp. 041117(1)-041117(3), 2009.  https://doi.org/10.1063/1.3077017
  22. J.-Y. Chang, M.-C. Tsai, and Y.-K. Kuo, "Advantages of blue InGaN light-emitting diodes with AlGaN barriers", Opt. Lett., Vol. 35, No. 9, pp. 1368-1370, 2010.  https://doi.org/10.1364/OL.35.001368
  23. M. A. A. Z. M. Sahar, Z. Hassan, S. S. Ng, and N. A. Hamzah, "Highly efficient near ultraviolet LEDs using InGaN/Gan/AlxGa1-xN/GaN multiple quantum wells at high teperature on sapphire substrate", Mater. Sci. Semicond. Process., Vol. 156, pp. 107298(1)-107298(9), 2023.