DOI QR코드

DOI QR Code

Effect of Air Exposure on ZnO Thin Film for Electron Transport Layer of Quantum Dot Light-Emitting Diode

ZnO 박막 전자수송층의 공기 노출에 의한 양자점 발광다이오드의 특성 변화

  • Eunyong Seo (Department of Semiconductor Engineering, Gyeongsang National University) ;
  • Kyungjae Lee (Department of Semiconductor Engineering, Gyeongsang National University) ;
  • Jeong Ha Hwang (Department of Energy Science and Technology Centre for Artificial Atoms, Sungkyunkwan University (SKKU)) ;
  • Dong Hyun Kim (Department of Semiconductor Engineering, Gyeongsang National University) ;
  • Jaehoon Lim (Department of Energy Science and Technology Centre for Artificial Atoms, Sungkyunkwan University (SKKU)) ;
  • Donggu Lee (Department of Semiconductor Engineering, Gyeongsang National University)
  • 서은용 (경상국립대학교 반도체공학과) ;
  • 이경재 (경상국립대학교 반도체공학과) ;
  • 황정하 (성균관대학교 에너지공학과) ;
  • 김동현 (경상국립대학교 반도체공학과) ;
  • 임재훈 (성균관대학교 에너지공학과) ;
  • 이동구 (경상국립대학교 반도체공학과)
  • Received : 2023.11.13
  • Accepted : 2023.11.22
  • Published : 2023.11.30

Abstract

We investigated the electrical characteristics of ZnO nanoparticles (NPs) with air exposure that is a widely used electron transport layer for quantum dot light-emitting diodes (QLEDs). Upon air exposure, we observed changes in the density of states (DOS) of the trap levels of ZnO NPs. In particular, with air exposure, the concentration of deep trap energy levels in ZnO NPs decreased and electron mobility significantly improved. Consequently, the air-exposed ZnO reduced leakage current by approximately one order of magnitude and enhanced the external quantum efficiency at the low driving voltage region of the QLED. In addition, based on the excellent conductivity properties, high-brightness QLEDs could be achieved.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1F1A1062675). 이 연구는 2021년도 산업통상자원부및산업기술기획평가원(KEIT) 연구비 지원에 의한 연구임(20016195). 또한, 본 결과물은 2021년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.

References

  1. B. Li, Z. Yang, W. Gong, X. Chen, D. W. Bruce, S. Wang, H. Ma, Y. Liu, W. Zhu, Z. Chi, and Y. Wang, "Intramolecular Through-Space Charge Transfer Based TADF-Active Multifunctional Emitters for High Efficiency Solution-Processed OLED", Adv. Optical Mater., Vol. 9, No. 5, p. 2100180, 2021. 
  2. K.-H. Kim, S. Lee, C.-K. Moon, S.-Y. Kim, Y.-S. Park, J.-H. Lee, J. W. Lee, J. Huh, Y. You, and J.-J. Kim, "Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes", Nat. Commun., Vol. 5, p. 4769, 2014. 
  3. S.-Y. Kim, W.-I. Jeong, C. Mayr, Y.-S. Park, K.-H. Kim, J.-H. Lee, C.-K. Moon, W. Brutting, and J.-J. Kim, "Organic Light-Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter", Adv. Funct. Mater., Vol. 23, No. 31, pp. 3896-3900, 2013.  https://doi.org/10.1002/adfm.201300104
  4. J. Song, O. Wang, H. Shen, Q. Lin, Z. Li, L. Wang, X. Zhang, and L. S. Li, "Over 30% External Quantum Efficiency Light-Emitting Diodes by Engineering Quantum Dot-Assisted Energy Level Match for Hole Transport Layer", Adv. Funct. Mater., Vol. 29, No. 33 p. 1808377, 2019. 
  5. X. Li, Q. Lin, J. Song, H. Shen, H. Zhang, L. S. Li, X. Li, and Z. Du, "Quantum-Dot Light-Emitting Diodes for Outdoor Displays with High Stability at High Brightness", Adv. Optical Mater., Vol. 8, No.2, p. 1901145, 2020. 
  6. F. Wang, Q. Hua, Q. Lin, F. Zhang, F. Chen, H. Zhang, X. Zhu, X. Xue, X. Xu, H. Shen, H. Zhang, and W. Ji, "High-Performance Blue Quantum-Dot Light-Emitting Diodes by Alleviating Electron Trapping", Adv. Optical Mater., Vol. 10, No. 13, p. 2200319, 2022. 
  7. K. P. Acharya, A. Titov, J. Hyvonen, C. Wang, J. Tokarz, and P. H. Holloway, "High efficiency quantum dot light emitting diodes from positive aging", Nanoscale, Vol. 9, pp. 14451-14457, 2017.  https://doi.org/10.1039/C7NR05472F
  8. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, "Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures", Nat. Photonics, Vol. 5, No.9, pp. 543-548, 2011.  https://doi.org/10.1038/nphoton.2011.171
  9. Y. Q. Liu, D. D. Zhang, H. X. Wei, Q. D. Ou, Y. Q. Li, and J. X. Tang, "Highly efficient quantum-dot light emitting diodes with sol-gel ZnO electron contact", Opt. Mater. Express, Vol. 7, No.7, pp. 2161-2167, 2017.  https://doi.org/10.1364/OME.7.002161
  10. Y. Li, F. D. Valle, M. Simonnet, I . Yamada, and J.-J. Delaunay, "Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires", Appl. Phys. Lett., Vol. 94, No.2, p. 023110, 2009. 
  11. Y. Ma, T.-W. Choi, S. H. Cheung, Y. Cheng, X. Xu, Y.-M. Xie, H.-W. Li, M. Li, H. Luo, W. Zhang, S. K. So, S. Chen, and S.-W. Tsang, "Charge transfer-induced photoluminescence in ZnO nanoparticles", Nanoscale, Vol. 11, No.18, pp. 8736-8743, 2019.  https://doi.org/10.1039/C9NR02020A
  12. W. Zhang, X. Chen, Y. Ma, Z. Xu, L. Wu, Y. Yang, S. Tsang, and S. Chen, "Positive aging effect of ZnO nanoparticles induced by surface stabilization", J. Phys. Chem, Vol. 11, No.15, pp. 5863-5870, 2020.  https://doi.org/10.1021/acs.jpclett.0c01640
  13. M. Chrzanowski, G. Zatryb, P. Sitarek, and A. Podhorodecki, "Effect of air exposure of ZnMgO nanoparticle electron transport layer on efficiency of quantum-dot light-emitting diodes", ACS Appl. Mater. Interfaces, Vol. 13, No.17, pp. 20305-20312, 2021.  https://doi.org/10.1021/acsami.1c01898
  14. Z. Chen, Z. Qin, S. Su, and S. Chen, "The influence of H 2 O and O 2 on the optoelectronic properties of inverted quantum-dot light-emitting diodes", Nano Res., Vol. 14, pp. 4140-4145, 2021.  https://doi.org/10.1007/s12274-021-3354-7
  15. P. Mark and W. Helfrich, "Space-charge-limited currents in organic crystals", J. Appl. Phys., Vol. 33, No.1, pp. 205-215, 1962.  https://doi.org/10.1063/1.1728487
  16. S. K. Kim, H. Yang, and Y. S. Kim, "Control of carrier injection and transport in quantum dot light emitting diodes (QLEDs) via modulating Schottky injection barrier and carrier mobility", J. Appl. Phys., Vol. 126, No. 18, p. 185702, 2019. 
  17. S. K. Kim and Y. S. Kim, "Charge carrier injection and transport in QLED layer with dynamic equilibrium of trapping/de-trapping carriers", J. Appl. Phys., Vol. 126, No. 3, p. 035704, 2019. 
  18. Y. Ye, J. Wang, Y. Qiu, J. Liu, B. Ye, Z. Yang, Z. Gong, L. Xu, Y. Zhou, Q. Huang, Z. Shen, W. Wu, S. Ju, L. Yu, Y. Fu, F. Li, and T. Guo, "Ultra-low EQE roll-off and marvelous efficiency perovskite quantum-dots light-emitting-diodes achieved by ligand passivation", Nano Energy, Vol. 90, p. 106583, 2021. 
  19. P. Yu, X. Zhu, J. Bai, H. Zhang, and W. Ji, "Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology", ACS Appl. Mater., Vol. 14, No. 46, pp. 52253-52261, 2022.  https://doi.org/10.1021/acsami.2c14507
  20. N. H. Langton and D. Matthews, "The dielectric constant of zinc oxide over a range of frequencies", J. Appl. Phys., Vol. 9, No. 11, p. 453, 1958. 
  21. J. Park, Y. S. Rim, P. Senanayake, J. Wu, and D. Streit, "Electrical defect state distribution in single crystal ZnO Schottky barrier diodes", Coatings, Vol. 10, No. 3, p. 206, 2020. 
  22. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee and C. Lee, "Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure", Nano Lett., Vol. 12, No. 5, pp. 2362-2366, 2012.  https://doi.org/10.1021/nl3003254
  23. W. K. Bae, Y.-S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, "Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes", Nat. Comm., Vol. 4, p. 2661, 2013.