DOI QR코드

DOI QR Code

Ultralow Intensity Noise Pulse Train from an All-fiber Nonlinear Amplifying Loop Mirror-based Femtosecond Laser

  • Dohyeon Kwon (Greenhouse gas Metrology Team, Advanced Instrumentation Institute, Korea Research Institute of Standards and Science) ;
  • Dohyun Kim (Department of Laser & Electron Beam Technologies, Korea Institute of Machinery & Materials)
  • Received : 2023.07.06
  • Accepted : 2023.09.08
  • Published : 2023.12.25

Abstract

A robust all-fiber nonlinear amplifying loop-mirror-based mode-locked femtosecond laser is demonstrated. Power-dependent nonlinear phase shift in a Sagnac loop enables stable and power-efficient mode-locking working as an artificial saturable absorber. The pump power is adjusted to achieve the lowest intensity noise for stable long-term operation. The minimum pump power for mode-locking is 180 mW, and the optimal pump power is 300 mW. The lowest integrated root-mean-square relative intensity noise of a free-running mode-locked laser is 0.009% [integration bandwidth: 1 Hz-10 MHz]. The long-term repetition-rate instability of a free-running mode-locked laser is 10-7 over 1,000 s averaging time. The repetition-rate phase noise scaled at 10-GHz carrier is -122 dBc/Hz at 10 kHz Fourier frequency. The demonstrated method can be applied as a seed source in high-precision real-time mid-infrared molecular spectroscopy.

Keywords

Acknowledgement

This study was supported by the National Research Council of Science and Technology [Project number: NK242G, 2023, Korea].

References

  1. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, "Generation of ultrastable microwaves via optical frequency division," Nat. Photonics 5, 425-429 (2011). https://doi.org/10.1038/nphoton.2011.121
  2. X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq,"Photonic microwave signals with zeptosecond-level absolute timing noise," Nat. Photonics 11, 44-47 (2017). https://doi.org/10.1038/nphoton.2016.215
  3. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P.O. Schmidt, "Optical atomic clocks," Rev. Mod. Phys. 87, 637-701 (2015). https://doi.org/10.1103/RevModPhys.87.637
  4. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, "Rapid and precise absolute distance measurements at long range," Nat. Photonics 3, 351-356 (2009). https://doi.org/10.1038/nphoton.2009.94
  5. Y. Na, C.-G. Jeon, C. Ahn, M. Hyun, D. Kwon, J. Shin, and J. Kim, "Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection," Nat. Photonics 14, 355-360 (2020). https://doi.org/10.1038/s41566-020-0586-0
  6. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, "A fully photonics-based coherent radar system," Nature 507, 341-345 (2014). https://doi.org/10.1038/nature13078
  7. I. Coddington, N. Newbury, and W. Swann, "Dual-comb spectroscopy," Optica 3, 414-426 (2016). https://doi.org/10.1364/OPTICA.3.000414
  8. A. J. Lind, A. Kowligy, H. Timmers, F. C. Cruz, N. Nader, M. C. Silfies, T. K. Allison, and S. A. Diddams, "Mid-infrared frequency comb generation and spectroscopy with few-cycle pulses and χ(2) nonlinear optics," Phys. Rev. Lett. 124, 133904 (2020).
  9. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, "Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996). https://doi.org/10.1109/2944.571743
  10. E. P. Ippen, H. A. Haus, and L. Y. Liu, "Additive pulse mode locking," J. Opt. Soc. Am. B 6, 1736-1745 (1989). https://doi.org/10.1364/JOSAB.6.001736
  11. N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. E. Fermann, "All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror," Opt. Express 24, 3095-3102 (2016). https://doi.org/10.1364/OE.24.003095
  12. W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, "All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation," Appl. Phys. B 123, 41 (2017).
  13. M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hulsing, T. W. Hansch, and R. Holzwarth, "Spaceborne frequency comb metrology," Optica 3, 1380-1387 (2016).
  14. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, "Operation of an optically coherent frequency comb outside the metrology lab," Opt. Express 22, 6996-7006 (2014). https://doi.org/10.1364/OE.22.006996
  15. D. Kim, D. Kwon, B. Lee, and J. Kim, "Polarization-maintaining nonlinear-amplifying-loop-mirror mode-locked fiber laser based on a 3×3 coupler," Opt. Lett. 44, 1068-1071 (2019). https://doi.org/10.1364/OL.44.001068
  16. N. Hoghooghi, S. Xing, P. Chang, D. Lesko, A. Lind, G. Rieker, and S. Diddams, "Broadband 1-GHz mid-infrared frequency comb," Light Sci. Appl. 11, 264 (2022).
  17. D. M. B. Lesko, H. Timmers, S. Xing, A. Kowligy, A. J. Lind, and S. A. Diddams, "A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser," Nat. Photonics 15, 281-286 (2021). https://doi.org/10.1038/s41566-021-00778-y
  18. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, "Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb," Opt. Lett. 36, 1578-1580 (2011). https://doi.org/10.1364/OL.36.001578
  19. P. Qin, Y. Song, H. Kim, J. Shin, D. Kwon, M. Hu, C. Wang, and J. Kim, "Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering," Opt. Express 22, 28276-28283 (2014). https://doi.org/10.1364/OE.22.028276
  20. D. von der Linde, "Characterization of the noise in continuously operating mode-locked lasers," Appl. Phys. B 39, 201-217 (1986). https://doi.org/10.1007/BF00697487
  21. W. J. Riley, Handbook of Frequency Stability Analysis (U. S. Government Printing, USA, 2008).