DOI QR코드

DOI QR Code

Colloidal Optics and Photonics: Photonic Crystals, Plasmonics, and Metamaterials

  • Jaewon Lee (KU-KIST Graduate School of Converging Science and Technology, Korea University) ;
  • Seungwoo Lee (KU-KIST Graduate School of Converging Science and Technology, Korea University)
  • Received : 2023.09.12
  • Accepted : 2023.09.26
  • Published : 2023.12.25

Abstract

The initial motivation in colloid science and engineering was driven by the fact that colloids can serve as excellent models to study atomic and molecular behavior at the mesoscale or microscale. The thermal behaviors of actual atoms and molecules are similar to those of colloids at the mesoscale or microscale, with the primary distinction being the slower dynamics of the latter. While atoms and molecules are challenging to observe directly in situ, colloidal motions can be easily monitored in situ using simple and versatile optical microscopic imaging. This foundational approach in colloid research persisted until the 1980s, and began to be extensively implemented in optics and photonics research in the 1990s. This shift in research direction was brought by an interplay of several factors. In 1987, Yablonovitch and John modernized the concept of photonic crystals (initially conceptualized by Lord Rayleigh in 1887). Around this time, mesoscale dielectric colloids, which were predominantly in a suspended state, began to be self-assembled into three-dimensional (3D) crystals. For photonic crystals operating at optical frequencies (visible to near-infrared), mesoscale crystal units are needed. At that time, no manufacturing process could achieve this, except through colloidal self-assembly. This convergence of the thirst for advances in optics and photonics and the interest in the expanding field of colloids led to a significant shift in the research paradigm of colloids. Initially limited to polymers and ceramics, colloidal elements subsequently expanded to include semiconductors, metals, and DNA after the year 2000. As a result, the application of colloids extended beyond dielectric-based photonic crystals to encompass plasmonics, metamaterials, and metasurfaces, shaping the present field of colloidal optics and photonics. In this review we aim to introduce the research trajectory of colloidal optics and photonics over the past three decades; To elucidate the utility of colloids in photonic crystals, plasmonics, and metamaterials; And to present the challenges that must be overcome and potential research prospects for the future.

Keywords

Acknowledgement

National Research Foundation (NRF) grant (NRF-2022M3H4A1A02074314 and NRF-RS-2023-00272363); Samsung Research Funding & Incubation Center for Future Technology grant (SRFC-MA2301-02); the KIST Institutional Program (Project No.: 2V09840-23-P023); a Korea University grant.

References

  1. P. Meakin, "Formation of fractal clusters and networks by irreversible diffusion-limited aggregation," Phys. Rev. Lett. 51, 1119 (1983).
  2. D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, "Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids," Phys. Rev. Lett. 54, 1416 (1985).
  3. P. N. Pusey and W. van Megan, "Phase behaviour of concentrated suspensions of nearly hard colloidal spheres," Nature 320, 340-342 (1986). https://doi.org/10.1038/320340a0
  4. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, "Three-dimensional direct imaging of structural relaxation near the colloidal glass transition," Science 287, 627-631 (2000). https://doi.org/10.1126/science.287.5453.627
  5. A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, and D. A. Weitz, "Colloidosomes: Selectively permeable capsules composed of colloidal particles," Science 298, 1006-1009 (2002). https://doi.org/10.1126/science.1074868
  6. W. Poon, "Colloids as big atoms," Science 304, 830-931 (2004). https://doi.org/10.1126/science.1097964
  7. A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, and A. G. Yodh, "Premelting at defects within bulk colloidal crystals," Science 309, 1207-1210 (2005). https://doi.org/10.1126/science.1112399
  8. S. Sacanna, W. T. M. Irvine, P. M. Chaikin, and D. J. Pine, "Lock and key colloids," Nature 464, 575-578 (2010). https://doi.org/10.1038/nature08906
  9. P. F. Damasceno, M. Engel, and S. C. Glotzer, "Predictive self-assembly of polyhedra into complex structures," Science 337, 453-457 (2012). https://doi.org/10.1126/science.1220869
  10. Y. Wang, Y. Wang, D. R. Breed, V. N. Manoharan, L. Feng, A. D. Hollingsworth, M. Weck, and D. J. Pine, "Colloids with valence and specific directional bonding," Nature 491, 51-55 (2012). https://doi.org/10.1038/nature11564
  11. T. Hueckel, G. M. Hocky, J. Palacci, and S. Sacanna, "Ionic solids from common colloids," Nature 580, 487-490 (2020). https://doi.org/10.1038/s41586-020-2205-0
  12. M. Li, Z. Yue, Y. Chen, H. Tong, H. Tanaka, and P. Tan, "Revealing thermally-activated nucleation pathways of diffusionless solid-to-solid transition," Nat. Commun. 12, 4042 (2021).
  13. C. Lopez, "Materials aspects of photonic crystals," Adv. Mater. 15, 1679-1704 (2003). https://doi.org/10.1002/adma.200300386
  14. P. D. Garcia, R. Sapienza, and C. Lopez, "Photonic glasses: A step beyond white paint," Adv. Mater. 22, 12-19 (2010). https://doi.org/10.1002/adma.200900827
  15. J. F. Galsteo- Lopez, M. Ibisate, R. Sapienza, L. S. FroufePerez, A. Blanco, and C. Lopez, "Self-assembled photonic structures," Adv. Mater. 23, 30-69 (2011). https://doi.org/10.1002/adma.201000356
  16. K. Kim, S. J. Yoo, J.-H. Huh, Q.-H. Park, and S. Lee, "Limitations and opportunities for optical metafluids to achieve an unnatural refractive index," ACS Photonics 4, 2298-2311 (2017). https://doi.org/10.1021/acsphotonics.7b00546
  17. R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S. Vignolini, and B. Frka-Petesic, "The self-assembly of cellulose nanocrystals: Hierarchical design of visual appearance," Adv. Mater. 30, 1704477 (2018).
  18. M. Kolle and S. Lee, "Progress and opportunities in soft photonics and biologically inspired optics," Adv. Mater. 30, 1702669 (2018).
  19. S. Lee, "Nanoparticle-on-mirror cavity: A historical view across nanophotonics and nanochemistry," J. Korean Phys. Soc. 81, 502-509 (2022). https://doi.org/10.1007/s40042-022-00407-z
  20. Y. D. Lee, S. H. Park, J.-H. Huh, A. Gopinath, and S. Lee, "DNA as grabbers and steerers of quantum emitters," Nanophotonics 12, 399-412 (2023). https://doi.org/10.1515/nanoph-2022-0602
  21. J. H. Moon, J. Ford, and S. Yang, "Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography," Polym. Adv. Technol. 17, 83-93 (2006). https://doi.org/10.1002/pat.663
  22. J. Henzie, M. H. Lee, and T. W. Odom, "Multiscale patterning of plasmonic metamaterials," Nat. Nanotechnol. 2, 549-554 (2007). https://doi.org/10.1038/nnano.2007.252
  23. S. Lee, Y.-C. Jeong, and J.-K. Park, "Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates," Opt. Express 15, 14550-14559 (2007). https://doi.org/10.1364/OE.15.014550
  24. J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, "3D micro- and nanostructures via interference lithography," Adv. Funct. Mater. 17, 3027-3041 (2007). https://doi.org/10.1002/adfm.200700140
  25. S. Lee, Y.-C. Jeong, and J.-K. Park, "Unusual surface reliefs from photoinduced creeping and aggregation behavior of azopolymer," Appl. Phys. Lett. 93, 031912 (2008).
  26. M. Maldovan and E. L. Thomas, Periodic materials and interference lithography: for photonics, phononics, and mechanics (John Wiley & Sons, USA, 2009).
  27. S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, "Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage," J. Mater. Chem. 19, 1105-1114 (2009). https://doi.org/10.1039/b815743j
  28. C. Lu and R. H. Lipson, "Interference lithography: A powerful tool for fabricating periodic structures," Laser Photonics Rev. 4, 568-580 (2010). https://doi.org/10.1002/lpor.200810061
  29. S. Lee, H. S. Kang, and J.-K. Park, "High-resolution patterning of various large-area, highly ordered structural motifs by directional photofluidization lithography: Sub-30-nm line, ellipsoid, rectangle, and circle arrays," Adv. Funct. Mater. 21, 1770-1778 (2011). https://doi.org/10.1002/adfm.201001927
  30. Z. Mahimwalla, K. G. Yager, J.-I. Mamiya, A. Shishido, A. Priimagi, and C. J. Barrett, "Azobenzene photomechanics: Prospects and potential applications," Polym. Bull. 69, 967-1006 (2012). https://doi.org/10.1007/s00289-012-0792-0
  31. S. Lee, H. S. Kang, and J.-K. Park, "Directional photofluidization lithography: Micro/nanostructural evolution by photofluidic motions of azobenzene materials," Adv. Mater. 24, 2069-2103 (2012). https://doi.org/10.1002/adma.201104826
  32. S. M. Lubin, W. Zhou, A. J. Hryn, M. D. Huntington, and T. W. Odom, "High-rotational symmetry lattices fabricated by Moire nanolithography," Nano Lett. 12, 4948-4952 (2012). https://doi.org/10.1021/nl302535p
  33. S. Kim, Y. Su, A. Mihi, S. Lee, Z. Liu, T. K Bhandakkar, J. Wu, J. B Geddes, H. T Johnson, Y. Zhang, J.-K. Park, P. V. Braun, Y. Huang, and J. A. Rogers, "Flexible electronics: Imbricate scales as a design construct for microsystem technologies (Small 6/2012)," Small 8, 785-785 (2012). https://doi.org/10.1002/smll.201290038
  34. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, "Lasing action in strongly coupled plasmonic nanocavity arrays," Nat. Nanotechnol. 8, 506-511 (2013). https://doi.org/10.1038/nnano.2013.99
  35. I. Karnadi, J. Son, J. Y. Kim, H. Jang, S. Lee, K. S. Kim, B. Min, and Y.-H. Lee, "A printed nanobeam laser on a SiO2/Si substrate for low-threshold continuous-wave operation," Opt. Express 22, 12115-12121 (2014). https://doi.org/10.1364/OE.22.012115
  36. M. D. Huntington, L. J. Lauhon, and T. W. Odom, "Subwavelength lattice optics by evolutionary design," Nano Lett. 14, 7195-7200 (2014). https://doi.org/10.1021/nl5040573
  37. S.-A. Lee, H. S. Kang, J.-K. Park, and S. Lee, "Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography," Adv. Mater. 26, 7521-7528 (2014). https://doi.org/10.1002/adma.201403098
  38. B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljacic, "Spawning rings of exceptional points out of Dirac cones," Nature 525, 354-358 (2015). https://doi.org/10.1038/nature14889
  39. H. S. Kang, S. Lee, J. Choi, H. Lee, J.-K. Park, and H.-T. Kim, "Light-induced surface patterning of silica," ACS Nano. 9, 9837-9848 (2015).
  40. G. Yoon, I. Kim, and J. Rho, "Challenges in fabrication towards realization of practical metamaterials," Microelectron. Eng. 163, 7-20 (2016). https://doi.org/10.1016/j.mee.2016.05.005
  41. S. Lee, B. Kang, H. Keum, N. Ahmed, J. A. Rogers, P. M. Ferreira, S. Kim, and B. Min, "Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing," Sci. Rep. 6, 27621 (2016).
  42. A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, "Programmable and reversible plasmon mode engineering," Proc. Natl. Acad. Sci. USA 50, 14201-14206 (2016). https://doi.org/10.1073/pnas.1615281113
  43. C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, "Printed photonic elements: Nanoimprinting and beyond," J. Mater. Chem. C 4, 5133-5153 (2016). https://doi.org/10.1039/C6TC01237J
  44. K. J. Park, J. H. Park, J.-H. Huh, C. H. Kim, D. H. Ho, G. H. Choi, P. J. Yoo, S. M. Cho, J. H. Cho, and S. Lee, "Petal-inspired diffractive grating on a wavy surface: Deterministic fabrications and applications to colorizations and LED devices," ACS Appl. Mater. Interface 9, 9935-9944 (2017). https://doi.org/10.1021/acsami.6b15536
  45. B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, "Transfer print techniques for heterogeneous integration of photonic components," Prog. Quantum Electron. 52, 1-17 (2017). https://doi.org/10.1016/j.pquantelec.2017.01.001
  46. K. Kim, H. Park, K. J. Park, S. H. Park, H. H. Kim, and S. Lee, "Light-directed soft mass migration for micro/nanophotonics," Adv. Optical Mater. 7, 1900074 (2019).
  47. S. M. Kamali, E. Arbabi, H. Kwon, and A. Faraon, "Meta-surface-generated complex 3-dimensional optical fields for interference lithography," Proc. Natl. Acad. Sci. USA 116, 21379-21384 (2019). https://doi.org/10.1073/pnas.1908382116
  48. K. Lee, N. Kim, K. Kim, H.-D. Um, W. Jin, D. Choi, J. Park, K. J. Park, S. Lee, and K. Seo, "Neutral-colored transparent crystalline silicon photovoltaics," Joule 4, 235-246 (2020). https://doi.org/10.1016/j.joule.2019.11.008
  49. J. H. Lee, H.S. Kim, J.-Y. Hwang, J. Chung, T.-J. Jang, D. G. Seo, Y. Gao, J. Lee, H. Park, S. Lee, H. C. Moon, H. Cheng, S.-H. Lee, and S.-W. Hwang, "3D printed, customizable, and multifunctional smart electronic eyeglasses for wearable healthcare systems and human-machine interfaces," ACS Appl. Mater. Interfaces 12, 21424-21432 (2020). https://doi.org/10.1021/acsami.0c03110
  50. A. Vyatskikh, R. C. Ng, B. Edwards, R. M. Briggs, and J. R. Greer, "Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals," Nano Lett. 20, 3513-3520 (2020). https://doi.org/10.1021/acs.nanolett.0c00454
  51. Y. Lim, B. Kang, S. J. Hong, H. Son, E. Im, J. Bang, and S. Lee, "A field guide to azopolymeric optical Fourier surfaces and augmented reality," Adv. Funct. Mater. 31, 2104105 (2021).
  52. V. F. Chernow, R. C. Ng, S. Peng, H. A. Atwater, and J. R. Greer, "Dispersion mapping in 3-Dimensional core-shell photonic crystal lattices capable of negative refraction in the mid-infrared," Nano Lett. 21, 9102-9107 (2021). https://doi.org/10.1021/acs.nanolett.1c02851
  53. Y. Lim, B. Kang, and S. Lee, "Photo-transformable gratings for augmented reality," Adv. Funct. Mater. 31, 2100839 (2021).
  54. P. Chengfeng, Z. Shutao, M. Farsari, S. H. Oh, and J. K. W. Yang, "Nanofabrication: the unsung hero in enabling advances in nanophotonics," Nanophotonics 12, 1359-1361 (2023). https://doi.org/10.1515/nanoph-2023-0217
  55. K. Kim, Y. Lim, H. Son, S. J. Hong, C.-W. Shin, D. Baek, H. H. Kim, N. Kim, J. Bang, and S. Lee, "Optical Fourier volumes: A revisiting of holographic photopolymers and photo-addressable polymers," Adv. Opt. Mater. 10, 2201421 (2022).
  56. H. Wang, W. Zhang, D. Ladika, H. Yu, D. Gailevicius, H. Wang, C.-F. Pan, P. N. S. Nair, Y. Ke, T. Mori, J. Y. E. Chan, Q. Ruan, M. Farsari, M. Malinauskas, S. Juodkazis, M. Gu, and J. K. W. Yang, "Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications," Adv. Funct. Mater. 33, 2214211 (2023).
  57. S. H. Lee, D. Baek, W. Cho, N. Lee, K. Kim, J.-H. Kim, H.-J. Kim, H. H. Kim, H. J. Kim, S. Lee, and S.-M. Lee, "Tailoring luminescent solar concentrators for high-performance flexible double-junction III-V photovoltaics," Adv. Funct. Mater. 33, 2210357 (2023).
  58. M. Kagias, S. Lee, A. C. Friedman, T. Zheng, D. Veysset, A. Faraon, and J. R. Greer, "Metasurface-enabled holographic lithography for impact-absorbing nanoarchitected sheets," Adv. Mater. 35, 2209153 (2023).
  59. S. Jo, H. Park, T. Jun, K. Kim, H. Jung, S. Park, B. Lee, S. Lee, and D. Y. Ryu, "Symmetry-breaking in double gyroid block copolymer films by non-affine distortion," Appl. Mater. Today 23, 101006 (2021).
  60. H. Park, S. Jo, B. Kang, K. Hur, S. S. Oh, D. Y. Ryu, and S. Lee, "Block copolymer gyroids for nanophotonics: significance of lattice transformations," Nanophotonics 11, 2583-2615 (2022). https://doi.org/10.1515/nanoph-2021-0644
  61. H. I. Jeon, S. Jo, S. Jeon, T. Jun, J. Moon, J. H. Cho, H. Ahn, S. Lee, D. Y. Ryu, and T. P. Russell, "Repairable macroscopic monodomain arrays from block copolymers enabled by photoplastic and photodielectric effects," ACS Nano 17, 8367-8375 (2023). https://doi.org/10.1021/acsnano.2c12800
  62. M. Faraday, "X. The Bakerian lecture-Experimental relations of gold (and other metals) to light," Philos. Trans. R. Soc. London 147, 145 (1857).
  63. M. R. Gartia, A. Hsiao, A. Pokhriyal, S. Seo, G. Kulsharova, B. T. Cunningham, T. C. Bond, and G. L. Liu, "Colorimetric plasmon resonance imaging using nano Lycurgus cup arrays," Adv. Opt. Mater. 1, 68-76 (2013). https://doi.org/10.1002/adom.201200040
  64. N. Wood, Chinese Glazes: Their Origins, Chemistry, and Recreation (University of Pennsylvania Press, USA, 1999).
  65. P. Colomban, A. Tournie, and P. Ricciardi, "Raman spectroscopy of copper nanoparticle-containing glass matrices: ancient red stained-glass windows," J. Raman Spectrosc. 40, 1949-1955 (2009). https://doi.org/10.1002/jrs.2345
  66. S. Ni, J. Leemann, I. Buttinoni, L. Isa, and H. Wolf, "Programmable colloidal molecules from sequential capillarity-assisted particle assembly," Sci. Adv 2, e1501779 (2016).
  67. V Flauraud, M. Mastrangeli, G. D. Bernasconi, J. Butet, D. T. L. Alexander, E. Shahrabi, O. J. F. Martin, and J. Brugger, "Nanoscale topographical control of capillary assembly of nanoparticles," Nat. Nanotechnol. 12, 73-80 (2017). https://doi.org/10.1038/nnano.2016.179
  68. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, "Single-molecule strong coupling at room temperature in plasmonic nanocavities," Nature 535, 127-130 (2016). https://doi.org/10.1038/nature17974
  69. F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, and J. J. Baumberg, "Single-molecule optomechanics in "picocavities"," Science 354, 726-729 (2016). https://doi.org/10.1126/science.aah5243
  70. J.-H. Huh, J. Lee, and S. Lee, "Comparative study of plasmonic resonances between the roundest and randomly faceted Au nanoparticles-on-mirror cavities," ACS Photonics 5, 413-421 (2018). https://doi.org/10.1021/acsphotonics.7b00856
  71. M.-E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, "Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature," Nat. Commun. 8, 1296 (2017).
  72. J. Henzie, M. Grunwald, A. Widmer-Cooper, P. L. Geissler, and P. Yang, "Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices," Nat. Mater. 11, 131-137 (2012). https://doi.org/10.1038/nmat3178
  73. M. N. O'Brien, M. R. Jones, K. A. Brown, and C. A. Mirkin, "Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions," J. Am. Chem. Soc 136, 7603-7606 (2014). https://doi.org/10.1021/ja503509k
  74. D. K. Kim, Y. J. Hwang, C.-H. Yoon, H.-O. Yoon, K. S. Chang, G. Lee, S. Lee, G.-R. Yi, "Experimental approach to the fundamental limit of the extinction coefficients of ultra-smooth and highly spherical gold nanoparticles," Phys. Chem. Chem. Phys. 17, 20786-20794 (2015). https://doi.org/10.1039/C5CP02968F
  75. L. Sun, H. Lin, K. L. Kohlstedt, G. C. Schatz, and C. A. Mirkin, "Design principles for photonic crystals based on plasmonic nanoparticle superlattices," Proc. Natl. Acad. Sci. USA 115, 7242-7247 (2018). https://doi.org/10.1073/pnas.1800106115
  76. J. Lee, S. Y. Lee, D.-K. Lim, D. J. Ahn, and S. Lee, "Antifreezing gold colloids," J. Am. Chem. Soc. 141, 18682-18693 (2019). https://doi.org/10.1021/jacs.9b05526
  77. S. Wang, S. S. Park, C. T. Buru, H. Lin, P.-C. Chen, E. W. Roth, O. K. Farha, and C. A. Mirkin, "Colloidal crystal engineering with metal-organic framework nanoparticles and DNA," Nat. Commun. 11, 2495 (2020).
  78. J. Lee, J.-H. Huh, and S. Lee, "DNA base pair stacking crystallization of gold colloids," Langmuir 36, 5118-5125 (2020). https://doi.org/10.1021/acs.langmuir.0c00239
  79. J. J. Baumberg, J. Aizpurua, H. M. Mikkelsen, and D. R. Smith, "Extreme nanophotonics from ultrathin metallic gaps," Nat. Mater. 18, 668-678 (2019). https://doi.org/10.1038/s41563-019-0290-y
  80. Q.-Y. Lin, J. A. Mason, Z. Li, W. Zhou, M. N. O'Brien, K. A. Brown, M. R. Jones, S. Butun, B. Lee, V. P. Dravid, K. Aydin, and C. A. Mirkin, "Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly," Science 359, 669-672 (2018). https://doi.org/10.1126/science.aaq0591
  81. W. Zhou, Z. Liu, Z. Huang, H. Lin, D. Samanta, Q.-Y. Lin, K. Aydin, and C. A. Mirkin, "Device-quality, reconfigurable metamaterials from shape-directed nanocrystal assembly," Proc. Natl. Acad. Sci. USA 117, 21052-21057 (2020). https://doi.org/10.1073/pnas.2006797117
  82. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987).
  83. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987).
  84. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004). https://doi.org/10.1038/nmat1097
  85. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007). https://doi.org/10.1038/nphoton.2007.141
  86. J. Y. Lee, S. Lee, J.-K. Park, Y. Jun, Y.-G. Lee, K. M. Kim, J. H. Yun, and K. Y. Cho, "Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror," Opt. Express 18, A522-A527 (2010). https://doi.org/10.1364/OE.18.00A522
  87. J. Ge and Y. Yin, "Responsive photonic crystals," Angew. Chem. Int. Ed. 50, 1492-1522 (2011). https://doi.org/10.1002/anie.200907091
  88. G. von Freymann, V. Kitaev, B. V. Lotsch, and G. A. Ozin, "Bottom-up assembly of photonic crystals," Chem. Soc. Rev. 42, 2528-2554 (2013). https://doi.org/10.1039/C2CS35309A
  89. S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljacic, "Experimental observation of large Chern numbers in photonic crystals," Phys. Rev. Lett. 115, 253901 (2015).
  90. J. W. Dong, X. D. Chen, H. Zhu, Y. Wang, and X. Zhang, "Valley photonic crystals for control of spin and topology," Nat. Mater. 16, 298-302 (2017). https://doi.org/10.1038/nmat4807
  91. J. H. Lee, G. H. Choi, K. J. Park, D. Kim, J. Park, S. Lee, H. Yi, and P. J. Yoo, "Dual-colour generation from layered colloidal photonic crystals harnessing "core hatching" in double emulsions," J. Mater. Chem. C 7, 6924-6931 (2019). https://doi.org/10.1039/C9TC01055F
  92. J. Lv, D. Ding, X. Yang, K. Hou, X. Miao, D. Wang, B. Kou, L. Huang, and Z. Tang, "Biomimetic chiral photonic crystals," Angew. Chem. Int. Ed. 58, 7783-7787 (2019). https://doi.org/10.1002/anie.201903264
  93. H. H. Kim, E. Im, and S. Lee, "Colloidal photonic assemblies for colorful radiative cooling," Langmuir 36, 6589-6596 (2020). https://doi.org/10.1021/acs.langmuir.0c00051
  94. B. Xie, G. Su, H.-F. Wang, F. Liu, L. Hu, S.-Y. Yu, P. Zhan, H.-H. Liu, Z. Wang, and Y.-F. Chen, "Higher-order quantum spin Hall effect in a photonic crystal," Nat. Commun. 11, 3768 (2020).
  95. H. Park and S. Lee, "Double gyroids for frequency-isolated Weyl points in the visible regime and interference lithographic design," ACS Photonics 7, 1577-1585 (2020). https://doi.org/10.1021/acsphotonics.0c00532
  96. M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, and Q. Lin, "Lithium niobate photonic-crystal electro-optic modulator," Nat. Commun. 11, 4123 (2020).
  97. Y. Gong, S. Wong, A. J. Bennett, D. L. Huffaker, and S. S. Oh, "Topological insulator laser using valley-hall photonic crystals," ACS Photonics 7, 2089-2097 (2020). https://doi.org/10.1021/acsphotonics.0c00521
  98. J. Lee, J. Hahn, and H. Kim, "Diffractive optical element for noise-reduced beam shaping of multi-array point light source," Curr. Opt. Photonics 5, 506-513 (2021).
  99. S. Han, H. Wu, H. Zhang, and Z. Yang, "Midinfrared refractive-index sensor with high sensitivity based on an optimized photonic crystal coupled-cavity waveguide," Curr. Opt. Photonics 5, 444-449 (2021).
  100. T. Inoue, K. Ikeda, B. Song, T. Suzuki, K. Ishino, T. Asano, and S. Noda, "Integrated near-field thermophotovoltaic device overcoming blackbody limit," ACS Photonics 8, 2466-2472 (2021). https://doi.org/10.1021/acsphotonics.1c00698
  101. J. Shen, S. Zhang, W. Wang, S. Li, S. Zhang, and Y. Wang, "Midinfrared pulse compression in a dispersion-decreasing and nonlinearity-increasing tapered As2S3 photonic crystal fiber," Curr. Opt. Photonics 5, 250-260 (2021).
  102. Y. Zhou, Z. T. Gu, and Q. Ling, "Sensing characteristics of uncoated double cladding long-period fiber grating based on mode transition and dual-peak resonance," Curr. Opt. Photonics 5, 243-249 (2021). https://doi.org/10.3390/photonics8070243
  103. Y. Lim, H. Park, B. Kang, K. Kim, D. Yang, and S. Lee, "Holography, Fourier optics, and beyond photonic crystals: Holographic fabrications for Weyl points, bound states in the continuum, and exceptional points," Adv. Photonics Res. 2, 2100061 (2021).
  104. N. N. H. Anh, H.-G. Rhee, and Y.-S. Ghim, "Design and lithographic fabrication of elliptical zone plate array with high fill factor," Curr. Opt. Photonics 5, 8-16 (2021).
  105. M. H. Lee, T. Ryu, Y.-H. Kim, and J.-K. Yang, "Wide-fan-angle flat-top linear laser beam generated by long-pitch diffraction gratings," Curr. Opt. Photonics 5, 500-505 (2021).
  106. T. Inoue, M. Yoshida, J. Gelleta, K. Izumi, K. Yoshida, K. Ishizaki, M. De Zoysa, and S. Noda, "General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-mode operation," Nat. Commun. 13, 3262 (2022).
  107. D.-J. Lee, G.-B. Shim, J.-H. Jeong, and B.-H. O, "Cascaded volume Bragg grating for narrow spectral linewidth in high-power laser diodes," Curr. Opt. Photonics 6, 282-287 (2022).
  108. K. Kim, J. Eom, K. Sohn, and J. Shim, "Temperature-difference Flow sensor using multiple fiber Bragg gratings," Curr. Opt. Photonics 6, 297-303 (2022).
  109. M. Nakadai, T. Asano, and S. Noda, "Electrically controlled on-demand photon transfer between high-Q photonic crystal nanocavities on a silicon chip," Nat. Photonics 16, 113-118 (2022). https://doi.org/10.1038/s41566-021-00910-y
  110. H. Rah, S. Lee, Y.-H. Ryu, G. Park, and S. H. Song, "Waveguide-type multidirectional light field display," Curr. Opt. Photonics 6, 375-380 (2022).
  111. Q. Li, Y. Feng, Y. Sun, Z. Chang, Y. Wang, W. Peng, Y. Ma, and C. Tang, "Simulation of the structural parameters of anti-resonant hollow-core photonic crystal fibers," Curr. Opt. Photonics 6, 143-150 (2022).
  112. H. Park, S. S. Oh, and S. Lee, "Surface potential-driven surface states in 3D topological photonic crystals," arXiv:2302.09154 (2023).
  113. M. Yoshida, S. Katsuno, T. Inoue, J. Gelleta, K. Izumi, M. De Zoysa, K. Ishizaki, and S. Noda, "High-brightness scalable continuous-wave single-mode photonic-crystal laser," Nature 618, 727-732 (2023). https://doi.org/10.1038/s41586-023-06059-8
  114. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003). https://doi.org/10.1126/science.1089171
  115. W. A. Murray and W. L. Barnes, "Plasmonic materials," Adv. Mater. 19, 3771-3781 (2007). https://doi.org/10.1002/adma.200700678
  116. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 455, 376-379 (2008). https://doi.org/10.1038/nature07247
  117. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009). https://doi.org/10.1038/nature08364
  118. S. Lee, J. Shin, Y.-H. Lee, S. Fan, and J.-K. Park, "Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes," Nano Lett. 10, 296-304 (2010). https://doi.org/10.1021/nl903570c
  119. B. Luk'Yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010). https://doi.org/10.1038/nmat2810
  120. W. Zhou and T. W. Odom, "Tunable subradiant lattice plasmons by out-of-plane dipolar interactions," Nat. Nanotechnol. 6, 423-427 (2011). https://doi.org/10.1038/nnano.2011.72
  121. S. Lee, J. Shin, H. S. Kang, Y.-H. Lee, and J.-K. Park, "Deterministic nanotexturing by directional photofluidization lithography," Adv. Mater. 23, 3244-3250 (2011). https://doi.org/10.1002/adma.201100662
  122. Y. Liu and X. Zhang, "Metamaterials: A new frontier of science and technology," Chem. Soc. Rev. 40, 2494-2507 (2011). https://doi.org/10.1039/c0cs00184h
  123. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, "Photodetection with active optical antennas," Science 332, 702-704 (2011). https://doi.org/10.1126/science.1203056
  124. S. Lee, J. Shin, Y.-H. Lee, and J.-K. Park, "Fabrication of the funnel-shaped three-dimensional plasmonic tip arrays by directional photofluidization lithography," ACS Nano 4, 7175-7184 (2010). https://doi.org/10.1021/nn1017507
  125. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, "Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed," Nano Lett. 11, 1657-1663 (2011). https://doi.org/10.1021/nl200135r
  126. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science 334, 333-337 (2011). https://doi.org/10.1126/science.1210713
  127. S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, "Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts," Adv. Mater. 24, 3491-3497 (2012). https://doi.org/10.1002/adma.201200419
  128. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, "Revealing the quantum regime in tunnelling plasmonics," Nature 491, 574-577 (2012). https://doi.org/10.1038/nature11653
  129. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett. 12, 4932-4936 (2012). https://doi.org/10.1021/nl302516v
  130. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, "Switching terahertz waves with gate-controlled active graphene metamaterials," Nat. Mater. 11, 936-941 (2012). https://doi.org/10.1038/nmat3433
  131. J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, J. J. Baumberg, "Controlling subnanometer gaps in plasmonic dimers using graphene," Nano Lett. 13, 5033 (2013).
  132. J. Lin, J. P. Balthasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, "Polarization-controlled tunable directional coupling of surface plasmon polaritons," Science 340, 331-334 (2013). https://doi.org/10.1126/science.1233746
  133. H. S. Kang, S. Lee, S.-A. Lee, and J.-K. Park, "Multi-level micro/nanotexturing by three-dimensionally controlled photofluidization and its use in plasmonic applications," Adv. Mater. 25, 5490-5497 (2013). https://doi.org/10.1002/adma.201301715
  134. V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, "DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering," Nat. Commun. 5, 3448 (2014).
  135. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science 345, 298-302 (2014). https://doi.org/10.1126/science.1253213
  136. S. Lee and J. Kim, "Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminum film," Appl. Phys. Express 7, 112002 (2014).
  137. A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, "Real-time tunable lasing from plasmonic nanocavity arrays," Nat. Commun. 6, 6939 (2015).
  138. M. L. Brongersma, N. J. Halas, and P. Nordlander, "Plasmon-induced hot carrier science and technology," Nat. Nanotechnol. 10, 25-34 (2015). https://doi.org/10.1038/nnano.2014.311
  139. S. Lee, A. Ongko, H. Y. Kim, S.-G. Yim, G. Jeon, H. J. Jeong, S. Lee, M. Kwak, and S. Y. Yang, "Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets," Nanotechnology 27, 315301 (2015).
  140. S. Lee, K. E. Lee, W. J. Lee, B. C. Park, B. Kang, E. Hwang, and S. O. Kim, "Two-terminal graphene oxide devices for electrical modulation of broadband terahertz waves," Adv. Opt. Mater. 4, 548-554 (2016). https://doi.org/10.1002/adom.201500577
  141. D. Wang, A. Yang, W. Wang, Y. Hua, R. D Schaller, G. C. Schatz, and T. W. Odom, "Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices," Nat. Nanotechnol. 12, 889-894 (2017). https://doi.org/10.1038/nnano.2017.126
  142. J. Park, J.-H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, "Dynamic reflection phase and polarization control in metasurfaces," Nano Lett. 17, 407-413 (2017). https://doi.org/10.1021/acs.nanolett.6b04378
  143. M. Kim, J-H. Huh, J. Lee, H. J. Woo, K. Kim, D.-W. Jung, G.-R., Yi, M.-S. Jeong, S. Lee, and Y. J. Song, "Photofluidic near-field mapping of electric-field resonance in plasmonic metasurface assembled with gold nanoparticles," J. Phys. Chem. Lett. 8, 3745-3751 (2017). https://doi.org/10.1021/acs.jpclett.7b01307
  144. A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, "Plasmonic colour generation," Nat. Rev. Mater. 2, 16088 (2017).
  145. Y. Yang, D. Zhu, W. Yan, A. Agarwal, M. Zheng, J. D. Joannopoulos, P. Lalanne, T. Christensen, K. K. Berggren, and M. Soljacic, "A general theoretical and experimental framework for nanoscale electromagnetism," Nature 576, 248-252 (2019). https://doi.org/10.1038/s41586-019-1803-1
  146. J.-H. Huh, K. Kim, E. Im, J. Lee, Y.D. Cho, and S. Lee, "Exploiting colloidal metamaterials for achieving unnatural optical refractions," Adv. Mater. 32, 2001806 (2020).
  147. W.-J. Joo, J. Kyoung, M. Esfandyarpour, S.-H. Lee, H. Koo, S. Song, Y.-N. Kwon, S. H. Song, J. C. Bae, A. Jo, M.-J. Kwon, S. H. Han, S.-H. Kim, S. Hwang, and M. L. Brongersma, "Metasurface-driven OLED displays beyond 10,000 pixels per inch," Science 370, 459-463 (2020). https://doi.org/10.1126/science.abc8530
  148. H.-C. Ryu, "Analysis of the THz resonance characteristics of h-shaped metamaterials with varying width," Curr. Opt. Photonics 5, 66-71 (2021).
  149. Y. Lyu, J. Ruan, M. Zhao, R. Hong, H. Lin, D. Zhang, and C. Tao, "Enhancement of photoluminescence by Ag localized surface plasmon resonance for ultraviolet detection," Curr. Opt. Photonics 5, 1-7 (2021).
  150. J.-H. Song, J. van de Groep, S. J. Kim, and M. L. Brongersma, "Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking," Nat. Nanotechnol. 16, 1224-1230 (2021). https://doi.org/10.1038/s41565-021-00967-4
  151. S.-J. Kim, "Broadband phase-change metagrating design for efficient active reflection steering," Curr. Opt. Photonics 5, 134-140 (2021).
  152. A. H. Dorrah, N. A. Rubin, A. Zaidi, M. Tamagnone, and F. Capasso, "Metasurface optics for on-demand polarization transformations along the optical path," Nat. Photonics 15, 287-296 (2021). https://doi.org/10.1038/s41566-020-00750-2
  153. T. Rong and Q. Li, "Advantage of the intensive light scattering by plasmonic nanoparticles in velocimetry," Curr. Opt. Photonics 6, 79-85 (2022).
  154. A. Ji, J.-H. Song, Q. Li, F. Xu, C.-T. Tsai, R. C. Tiberio, B. Cui, P. Lalanne, P. G. Kik, D. A. B. Miller, and M. L. Brongersma, "Quantitative phase contrast imaging with a nonlocal angle-selective metasurface," Nat. Commun. 13, 7848 (2022).
  155. S. Han, "Gold-sapphire plasmonic nanostructures for coherent extreme-ultraviolet pulse generation," Curr. Opt. Photonics 6, 576-582 (2022).
  156. A. H. Dorrah and F. Capasso, "Tunable structured light with flat optics," Science 376, eabi6860 (2022).
  157. Y. Li, X. Wang, and Y. Zhang, "Dual-function dynamically tunable metamaterial absorber and its sensing application in the terahertz region," Curr. Opt. Photonics 6, 252-259 (2022).
  158. M. Pahlevaninezhad, Y.-W. Huang, M. Pahlevani, B. Bouma, M. J. Suter, F. Capasso, and H. Pahlevaninezhad, "Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions," Nature 16, 203-211 (2022). https://doi.org/10.1038/s41566-022-00956-6
  159. J. Kyoung, "A theoretical study on the low transition temperature of VO2 metamaterials in the THz regime," Curr. Opt. Photonics 6, 583-589 (2022).
  160. J. Lee and S. Lee, "Non-invasive, reliable, and fast quantification of DNA loading on gold nanoparticles by a one-step optical measurement," Anal. Chem. 95, 1856-1866 (2023). https://doi.org/10.1021/acs.analchem.2c03378
  161. W. Stober, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," J. Colloid Interface Sci. 26, 62-69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
  162. T. Hueckel, G. M. Hocky, and S. Sacanna, "Total synthesis of colloidal matter," Nat. Rev. Mater. 6, 1053-1069 (2021). https://doi.org/10.1038/s41578-021-00323-x
  163. P. V. Braun and P. Wiltzius, "Electrochemically grown photonic crystals," Nature 402, 603-604 (1999). https://doi.org/10.1038/45137
  164. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001). https://doi.org/10.1038/35104529
  165. P. Jiang and M. J. McFarland, "Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating," J. Am. Chem. Soc. 126, 13778 (2004).
  166. S. A. Rinne, F. Carcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photonics 2, 52-56 (2007). https://doi.org/10.1038/nphoton.2007.252
  167. S.-H. Kim, S.-J. Jeon, W. C. Jeong, H. S. Park, and S.-M. Yang, "Optofluidic synthesis of electroresponsive photonic Janus balls with isotropic structural colors," Adv. Mater. 20, 4129-4134 (2008). https://doi.org/10.1002/adma.200801167
  168. B. Hatton, L. Mishchenko, S. David, K. H. Sandhage, and J. Aizenberg, "Assembly of large-area, highly ordered, crack-free inverse opal films," Proc. Natl. Acad. Sci. USA 107, 10354-10359 (2010). https://doi.org/10.1073/pnas.1000954107
  169. E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, "Epitaxial growth of three-dimensionally architectured optoelectronic devices," Nat. Mater. 10, 676-681 (2011). https://doi.org/10.1038/nmat3071
  170. J.-G. Park, S.-H. Kim, S. Magkiriadou, T. M. Choi, Y.-S. Kim, and V. N. Manoharan, "Full-Spectrum Photonic Pigments with Non-iridescent Structural Colors through Colloidal Assembly," Angew. Chem. Int. Ed. 53, 2899-2903 (2014). https://doi.org/10.1002/anie.201309306
  171. G. Jacucci, S. Vignolini, and L. Schertel, "The limitations of extending nature's color palette in correlated, disordered systems," Proc. Natl. Acad. Sci. USA 117, 23345-23349 (2020). https://doi.org/10.1073/pnas.2010486117
  172. V. Hwang, A. B. Stephenson, S. Barkley, S. Brandt, M. Xiao, J. Aizenberg, and V. N. Manoharan, "Designing angle-independent structural colors using Monte Carlo simulations of multiple scattering," Proc. Natl. Acad. Sci. USA 118, E2015551118 (2021).
  173. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. B. Zhang, and B. Luk'Yanchuk, "Magnetic light," Sci. Rep. 2, 492 (2012).
  174. L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, "A New dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities," Adv. Mater. 24, 5934-5938 (2012). https://doi.org/10.1002/adma.201201987
  175. L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, "Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region," Nat. Commun. 4, 1904 (2013).
  176. H. Negoro, H. Sugimoto, and M. Fujii, "Helicity-preserving optical metafluids," Nano Lett. 23, 5101-5107 (2023). https://doi.org/10.1021/acs.nanolett.3c01026
  177. R. M. Kim, J.-H. Huh, S.J. Yoo, T. G. Kim, C. Kim, H. Kim, J. H. Han, N. H. Cho, Y.-C. Lim, S. W. Im, E. Im, J. R. Jeong, M. H. Lee, T.-Y. Yoon, H.-Y. Lee, Q-H. Park, S. Lee, and K. T. Nam, "Enantioselective sensing by collective circular dichroism," Nature 612, 470-476 (2022). https://doi.org/10.1038/s41586-022-05353-1
  178. Y. A. Urzhumov, G. Shvets, J. Fan, F. Capasso, D. Brandl, and P. Nordlander, "Plasmonic nanoclusters: A path towards negative-index metafluids," Opt. Express 15, 14129-14145 (2007). https://doi.org/10.1364/OE.15.014129
  179. S. N. Sheikholeslami, H. Alaeian, A. L. Koh, and J. A. Dionne, "A metafluid exhibiting strong optical magnetism," Nano Lett. 13, 4137-4141 (2013). https://doi.org/10.1021/nl401642z
  180. S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, "Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution," Nat. Nanotechnol. 9, 1002-1006 (2014). https://doi.org/10.1038/nnano.2014.243
  181. T. Hinamoto, S. Hotta, H. Sugimoto, and M. Fujii, "Colloidal solutions of silicon nanospheres toward all-dielectric optical metafluids," Nano Lett. 20, 7737-7743 (2020). https://doi.org/10.1021/acs.nanolett.0c03295
  182. A. Alu, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006). https://doi.org/10.1364/OE.14.001557
  183. A. Alu and N. Engheta, "Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles," Phys. Rev. B 78, 085112 (2008).
  184. A. Alu and N. Engheta, "The quest for magnetic plasmons at optical frequencies," Opt. Express 17, 5723-5130 (2009).
  185. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, "Self-assembled plasmonic nanoparticle clusters," Science 328, 1135-1138 (2010). https://doi.org/10.1126/science.1187949
  186. J. Lee, J.-H. Huh, K. Kim, and S. Lee, "DNA origami-guided assembly of the roundest 60-100 nm gold nanospheres into plasmonic metamolecules," Adv. Funct. Mater. 28, 1707309 (2018).
  187. F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alu, and X. Li, "A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance," Nat. Nanotechnol. 8, 95-99 (2013). https://doi.org/10.1038/nnano.2012.249
  188. K. Kim, J.-H. Huh, D. Yu, and S. Lee, "Fundamental and practical limits of achieving artificial magnetism and effective optical medium by using self-assembly of metallic colloidal clusters," Macromol. Res. 26, 1103-1107 (2018). https://doi.org/10.1007/s13233-018-6154-5
  189. Y. D. Cho, J.-H. Huh, K. J. Park, K. Kim, J. Lee, and S. Lee, "Using highly uniform and smooth selenium colloids as low-loss magnetodielectric building blocks of optical metafluids," Opt. Express 25, 13822-13833 (2017). https://doi.org/10.1364/OE.25.013822
  190. Y. D. Cho, J.-H. Huh, K. Kim, and S. Lee, "Scalable, highly uniform, and robust colloidal mie resonators for all-dielectric soft meta-optics," Adv. Opt. Mater. 7, 1801167 (2019).
  191. D. W. Jung, K. J. Park, S. Lee, J. Kim, G. Lee, and G.-R. Yi, "Scalable synthesis of carbon-embedded ordered macroporous titania spheres with structural colors," Korea J. Chem. Eng. 35, 2138-2144 (2018). https://doi.org/10.1007/s11814-018-0111-z
  192. J. W. Strutt (Lord Rayleigh), Phil. Mag., S.5, 24, 145 (1887).
  193. J. W. Strutt (Lord Rayleigh), Phil. Mag., S.5, 26, 256 (1888).
  194. E. R. Brown, C. D. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Opt. Soc. Am. B 10, 404-407 (1993). https://doi.org/10.1364/JOSAB.10.000404
  195. E. Ozbay, G. Tuttle, R. Biswas, M. Sigalas, and K.-M. Ho, "Micromachined millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 64, 2059-2061 (1994). https://doi.org/10.1063/1.111736
  196. D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett. 76, 2480 (1996).
  197. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). https://doi.org/10.1126/science.284.5421.1819
  198. O. Painter, J. Vuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Soc. Am. B 16, 275-285 (1999). https://doi.org/10.1364/JOSAB.16.000275
  199. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). https://doi.org/10.1038/nature02063
  200. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). https://doi.org/10.1126/science.1058847
  201. T.-J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). https://doi.org/10.1126/science.1094025
  202. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). https://doi.org/10.1038/35003523
  203. A. M. Urbas, M. Maldovan, P. DeRege, and E. L. Thomas, "Bicontinuous cubic block copolymer photonic crystals," Adv. Mater. 14, 1850-1853 (2002). https://doi.org/10.1002/adma.200290018
  204. Y. Kang, J. J. Walish, T. Gorishnyy, and E. L. Thomas, "Broad-wavelength-range chemically tunable block-copolymer photonic gels," Nat. Mater. 6, 957-960 (2007). https://doi.org/10.1038/nmat2032
  205. J. H. Holtz and S. A. Asher, "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials," Nature 389, 829-832 (1997). https://doi.org/10.1038/39834
  206. H. S. Lee, T. S. Shim, H. Hwang, S.-M. Yang, and S.-H. Kim, "Colloidal photonic crystals toward structural color palettes for security materials," Chem. Mater. 25, 2684-2690 (2013). https://doi.org/10.1021/cm4012603
  207. A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, "Photonic-crystal full-colour displays," Nat. Photonics 1, 468-472 (2007). https://doi.org/10.1038/nphoton.2007.140
  208. M. Maldovan and E. L. Thomas, "Diamond-structured photonic crystals," Nat. Mater. 3, 593-600 (2004). https://doi.org/10.1038/nmat1201
  209. S. H. Park, H. Park, K. Hur, and S. Lee, "Design of DNA origami diamond photonic crystals," ACS Appl. Bio Mater. 3, 747-756 (2020). https://doi.org/10.1021/acsabm.9b01171
  210. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004). https://doi.org/10.1063/1.1765734
  211. A.-P. Hynninen, J. H. J. Thijssen, E. C. M. Vermolen, M. Dijkstra, and A. van Blaaderen, "Self-assembly route for photonic crystals with a bandgap in the visible region," Nat. Mater. 6, 202-205 (2007). https://doi.org/10.1038/nmat1841
  212. V. N. Manoharan, M. T. Elsesser, and D. J. Pine, "Dense packing and symmetry in small clusters of microspheres," Science 301, 483-487 (2003). https://doi.org/10.1126/science.1086189
  213. E. Ducrot, M. He, G.-R. Yi, and D. J. Pine, "Colloidal alloys with preassembled clusters and spheres," Nat. Mater. 16, 652-657 (2017). https://doi.org/10.1038/nmat4869
  214. M. He, J. P. Gales, E. Ducrot, Z. Gong, G.-R. Yi, S. Sacanna, and D. J. Pine, "Colloidal diamond," Nature 585, 524-529 (2020). https://doi.org/10.1038/s41586-020-2718-6
  215. S. Magkiriadou, J.-G. Park, Y.-S. Kim, and V. N. Manoharan, "Disordered packings of core-shell particles with angle-independent structural colors," Opt. Mater. Express 2, 1343-1352 (2012). https://doi.org/10.1364/OME.2.001343
  216. S. Magkiriadou, J.-G. Park, Y.-S. Kim, and V. N. Manoharan, "Absence of red structural color in photonic glasses, bird feathers, and certain beetles," Phys. Rev. E 90, 062302 (2014).
  217. Y. Takeoka, S. Yoshioka, A. Takano, S. Arai, K. Nueangnoraj, H. Nishiraha, M. Teshima, Y. Ohtsuka, and T. Seki, "Production of colored pigments with amorphous arrays of black and white colloidal particles," Angew. Chem. Int. Ed. 52, 7261-7406 (2013). https://doi.org/10.1002/anie.201301321
  218. S.-H. Kim, S. Magkiriadou, D. K. Rhee, D. S. Lee, P. J. Yoo, V. N. Manoharan, and G.-R. Yi, "Inverse photonic glasses by packing bidisperse hollow microspheres with uniform cores," ACS Appl. Mater. Interface. 9, 24155 (2017).
  219. S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant," J. Phys. Chem. B 16, 3073-3077 (1999).
  220. Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science 298, 2176-2179 (2002). https://doi.org/10.1126/science.1077229
  221. S. D. Perrault, and W. C. W. Chan, "Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm," J. Am. Chem. Soc. 131, 17042-17043 (2009). https://doi.org/10.1021/ja907069u
  222. H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, "Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles," Nature 556, 360-365 (2018). https://doi.org/10.1038/s41586-018-0034-1
  223. H.-Y. Ahn, S.J. Yoo, N. H. Cho, R. M. Kim, H. Kim, J.-H. Huh, S. Lee, and K. T. Nam, "Bioinspired toolkit based on intermolecular encoder toward evolutionary 4D chiral plasmonic materials," Acc. Chem. Res. 52, 2768-2783 (2019). https://doi.org/10.1021/acs.accounts.9b00264
  224. S. Choi, S. W. Im, J.-H. Huh, S. Kim, J. Kim, Y.-C. Lim, R. M. Kim, J. H. Han, H. Kim, M. Sprung, S. Y. Lee, W. Cha, R. Harder, S. Lee, K. T. Nam, and H. Kim, "Strain and crystallographic identification of the helically concaved gap surfaces of chiral nanoparticles," Nat. Commun. 14, 3615 (2023).
  225. H. Kim, E. Im, R. M. Kim, N. H. Cho, J. H. Han, H.-Y. Ahn, J.-H. Huh, S. J. Yoo, S. Lee, and K. T. Nam, "Capacitive enhancements of the chiroptical response in plasmonic helicoids," Adv. Opt. Mater. 11, 2300205 (2023).
  226. G. Gonzalez-Rubio, J. Mosquera, V. Kumar, A. Pedrazo-Tardajos, P. Llombart, D. M. Solis, I. Lobato, E. G. Noya, A. Guerrero-Martinez, J. M. Taboada, F. Obelleiro, L. G. Macdowell, S. Bals, and L. M. Liz-Marzan, "Micelle-directed chiral seeded growth on anisotropic gold nanocrystals," Science 368, 1472-1477 (2020). https://doi.org/10.1126/science.aba0980
  227. J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, "Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms," J. Am. Chem. Soc. 127, 5312-5313 (2005). https://doi.org/10.1021/ja043245a
  228. B. D. Clark, C. R. Jacobson, M. Lou, D. Renard, G. Wu, L. Bursi, A. S. Ali, D. F. Swearer, A.-L. Tsai, P. Nordlander, and N. J. Halas, "Aluminum nanocubes have sharp corners," ACS Nano 13, 9682-9691 (2019). https://doi.org/10.1021/acsnano.9b05277
  229. S. Lu, H. Yu, S. Gottheim, H. Gao, C. J. DeSantis, B. D. Clark, J. Yang, C. R. Jacobson, Z. Lu, P. Nordlander, N. J. Halas, and K. Liu, "Polymer-directed growth of plasmonic aluminum nanocrystals," J. Am. Chem. Soc. 140, 15412-15418 (2018). https://doi.org/10.1021/jacs.8b08937
  230. K. R. Catchpole and A. Polman, "Plasmonic solar cells," Opt. Express 16, 21793-21800 (2008). https://doi.org/10.1364/OE.16.021793
  231. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, "Light trapping in ultrathin plasmonic solar cells," Opt. Express 18, A237-A245 (2010). https://doi.org/10.1364/OE.18.00A237
  232. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, "Surface-plasmon-enhanced light-emitting diodes," Adv. Mater. 20, 1253-1257 (2008). https://doi.org/10.1002/adma.200701130
  233. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, "3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination," Nat. Photon. 10, 393-398 (2016). https://doi.org/10.1038/nphoton.2016.75
  234. L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, "Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation," Sci. Adv. 2, e1501227 (2016).
  235. S. Linic, P. Christopher, and D. B. Ingram, "Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy," Nat. Mater. 10, 911-921 (2011). https://doi.org/10.1038/nmat3151
  236. S. Linic, U. Aslam, C. Boerigter, and M. Morabito, "Photochemical transformations on plasmonic metal nanoparticles," Nat. Mater. 14, 567-576 (2015). https://doi.org/10.1038/nmat4281
  237. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nat. Photon. 3, 654-657 (2009). https://doi.org/10.1038/nphoton.2009.187
  238. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, "Vertically oriented sub-10-nm plasmonic nanogap arrays," Nano Lett. 10, 2231-2236 (2010). https://doi.org/10.1021/nl1012085
  239. X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, "Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves," Nat. Commun. 4, 2361 (2013).
  240. Y.-M. Bahk, B. J. Kang, Y. S. Kim, J.-Y. Kim, W. T. Kim, T. Y. Kim, T. Kang, J. Rhie, S. Han, C.-H. Park, F. Rotermund, and D.-S. Kim, "Electromagnetic saturation of angstrom-sized quantum barriers at terahertz frequencies," Phys. Rev. Lett. 115, 125501 (2015).
  241. J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, "Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry," Nat. Commmun. 1, 150 (2010).
  242. R. Chikkaraddy, V. A. Turek, N. Kongsuwan, F. Benz, C. Carnegie, T. van de Goor, B. de Nijs, A. Demetriadou, O. Hess, U. F. Keyser, and J. J. Baumberg, "Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami," Nano Lett. 18, 405-411 (2018). https://doi.org/10.1021/acs.nanolett.7b04283
  243. S. Lee, "Colloidal superlattices for unnaturally high-index metamaterials at broadband optical frequencies," Opt. Express 23, 28170-28181 (2015). https://doi.org/10.1364/OE.23.028170
  244. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech. 47, 2075-2084s (1999).
  245. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000).
  246. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 (2006).
  247. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev. Lett. 102, 023901 (2009).
  248. M. W. Knight, J. Fan, F. Capasso, and N. J. Halas, "Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures," Opt. Express 18, 2579-2587 (2010). https://doi.org/10.1364/OE.18.002579
  249. J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, "Near-normal incidence dark-field microscopy: Applications to nanoplasmonic spectroscopy," Nano Lett 12, 2817-2821 (2012). https://doi.org/10.1021/nl300160y
  250. T. M. Nguyen, Y.D. Cho, J.-H. Huh, H. Ahn, N.Y. Kim, K. H. Rho, J. Lee, M. Kwon, S. H. Park, C.E. Kim, K. Kim, Y.-S. Kim, and S. Lee, "Ultralow-loss substrate for nanophotonic dark-field microscopy," Nano Lett. 23, 1546-1554 (2023). https://doi.org/10.1021/acs.nanolett.2c05030
  251. K. J. Park, J.-H. Huh, D. W. Jung, J.-S. Park, G. H. Choi, G. Lee, P. J. Yoo, H.-G. Park, G.-R. Yi, and S. Lee, "Assembly of "3D" plasmonic clusters by "2D" AFM nanomanipulation of highly uniform and smooth gold nanospheres," Sci. Rep. 7, 6045 (2017).
  252. P. Wang, J.-H. Huh, J. Lee, K. Kim, K. J. Park, S. Lee, and Y. Ke, "Magnetic plasmon networks programmed by molecular self-assembly," Adv. Mater. 31, 1901364 (2019).
  253. P. Wang, J.-H. Huh, H. Park, D. Yang, Y. Zhang, Y. Zhang, J. Lee, S. Lee, and Y. Ke, "DNA origami guided self-assembly of plasmonic polymers with robust long-range plasmonic resonance," Nano Lett. 20, 8926-8932 (2020). https://doi.org/10.1021/acs.nanolett.0c04055
  254. K. Kim and S. Lee, "Detailed balance analysis of plasmonic metamaterial perovskite solar cells," Opt. Express 27, A1241-A1260 (2019). https://doi.org/10.1364/OE.27.0A1241
  255. S. Jang, E. Hwang, Y. Lee, S. Lee, and J. H. Cho, "Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals," Nano Lett. 15, 2542-2547 (2015). https://doi.org/10.1021/acs.nanolett.5b00105
  256. S. Lee and J. Kim, "Design of optical metamaterial mirror with metallic nanoparticles for floating-gate graphene optoelectronic devices," Opt. Express 23, 21809-21818 (2015). https://doi.org/10.1364/OE.23.021809
  257. J. Shin, J. T. Shen, and S. Fan, "Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth," Phys. Rev. Lett. 102, 093903 (2009).
  258. K. Chung, R. Kim, T. Chang, and J. Shin, "Optical effective media with independent control of permittivity and permeability based on conductive particles," Appl. Phys. Lett. 109, 021114 (2016).
  259. H. Shim, F. Monticone, and O. D. Miller, "Fundamental limits to the refractive index of transparent optical materials," Adv. Mater. 33, 2103946 (2021).
  260. J.-H. Huh, J. Lee, and S. Lee, "Soft plasmonic assemblies exhibiting unnaturally high refractive index," Nano Lett. 20, 4768-4774 (2020). https://doi.org/10.1021/acs.nanolett.0c00422
  261. J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. H. Shin, S. Fan, and S. O. Kim, "Highly tunable refractive index visible-light metasurface from block copolymer self-assembly," Nat. Commun. 7, 12911 (2016).
  262. A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, "Monodisperse double emulsions generated from a microcapillary device," Science 308, 537-541 (2005). https://doi.org/10.1126/science.1109164
  263. G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, 368-373 (2006). https://doi.org/10.1038/nature05058
  264. M. Prakash and N. Gershenfeld, "Microfluidic bubble logic," Science 315, 832-835 (2007). https://doi.org/10.1126/science.1136907
  265. G. Katsikis, J. S. Cybulski, and M. Prakash, "Synchronous universal droplet logic and control," Nat. Phys 11, 588-596 (2015). https://doi.org/10.1038/nphys3341
  266. S. J. Yeo, K. J. Park, K. Guo, P. J. Yoo, and S. Lee, "Microfluidic generation of monodisperse and photoreconfigurable microspheres for floral iridescence-inspired structural colorization," Adv. Mater. 28, 5268-5275 (2016). https://doi.org/10.1002/adma.201600425
  267. M. S. Bhamla, B. Benson, C. Chai, G. Katsikis, A. Johri, and M. Prakash, "Hand-powered ultralow-cost paper centrifuge," Nat. Biomed. Eng. 1, 0009 (2017).
  268. S. J. Yeo, M. J. Oh, H. M. Jun, M. Lee, J. G. Bae, Y. Kim, K. J. Park, S. Lee, D. Lee, B. M. Weon, W. B. Lee, S. J. Kwon, and P. J. Yoo, "A plesiohedral cellular network of graphene bubbles for ultralight, strong, and superelastic materials," Adv. Mater. 30, 1802997 (2018).
  269. S. Yadavali, H.-H. Jeong, D. Lee, and D. Issadore, "Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles," Nat. Commun. 9, 1222 (2018).
  270. Y. J. Jeong, K. J. Park, K. Kim, S. Lee, and P. J. Yoo, "Uniaxial alignment of ZnO nanowires via light-induced directional migration of azopolymeric microspheres," Polymer 138, 180-187s (2018).
  271. S. Yadavali, D. Lee, and D. Issadore, "Robust microfabrication of highly parallelized three-dimensional microfluidics on silicon," Sci. Rep. 9, 12213 (2019).
  272. H. H. Kim, Y. D. Cho, D. Baek, K. H. Rho, S. H. Park, and S. Lee, "Parallelization of microfluidic droplet junctions for ultraviscous fluids," Small 18, 2205001 (2022).
  273. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles," Science 277, 1078-1081 (1997). https://doi.org/10.1126/science.277.5329.1078
  274. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, "Design and self-assembly of two-dimensional DNA crystals," Nature 394, 539-544 (1998). https://doi.org/10.1038/28998
  275. P. W. K. Rothemund, "Folding DNA to create nanoscale shapes and patterns," Nature 440, 297-302 (2006). https://doi.org/10.1038/nature04586
  276. S. M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, and W. M. Shih, "Self-assembly of DNA into nanoscale three-dimensional shapes," Nature 459, 414-418 (2009). https://doi.org/10.1038/nature08016
  277. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, "DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response," Nature 483, 311-314 (2012). https://doi.org/10.1038/nature10889
  278. W. B. Rogers and V. N. Manoharan, "Programming colloidal phase transitions with DNA strand displacement," Science 347, 639-642 (2015). https://doi.org/10.1126/science.1259762
  279. J. H. Heo, K.-I. Kim, H. H. Cho, J. W. Lee, B. S. Lee, S. Y. Yoon, K. J. Park, S. Lee, J. Kim, D. Whang, and J. H. Lee, "Ultrastable-stealth large gold nanoparticles with dna directed biological functionality," Langmuir 31, 13773-13782 (2015). https://doi.org/10.1021/acs.langmuir.5b03534
  280. T. Gerling, K. F. Wagenbauer, A. M. Neuner, and H. Dietz, "Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components," Science 347, 1446-1452 (2015). https://doi.org/10.1126/science.aaa5372
  281. P. Wang, S. Gaitanaros, S. Lee, M. Bathe, W. M. Shih, and Y. Ke, "Programming self-assembly of DNA origami honeycomb two-dimensional lattices and plasmonic metamaterials," J. Am. Chem. Soc. 138, 7733-7740 (2016). https://doi.org/10.1021/jacs.6b03966
  282. A. Gopinath, M. Miyazono, A. Faraon, and P. W. K. Rothemund, "Engineering and mapping nanocavity emission via precision placement of DNA origami," Nature 535, 401 (2016).
  283. F. Praetorius, B. Kick, K. L. Behler, M. N. Honemann, D. Weuster-Botz, and H. Dietz, "Biotechnological mass production of DNA origami," Nature 552, 84-87 (2017). https://doi.org/10.1038/nature24650
  284. S. F. J. Wickham, A. Auer, J. Min, N. Ponnuswamy, J. B. Woehrstein, F. Schueder, M. T. Strauss, J. Schnitzbauer, B. Nathwani, Z. Zhao, S. D Perrault, J. Hahn, S. Lee, M. M. Bastings, S. W. Helmig, A. L. Kodal, P. Yin, R. Jungmann, and W. M Shih, "Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard," Nat. Commun. 11, 5768 (2020).
  285. A. Gopinath, C. Thachuk, A. Mitskovets, H. A. Atwater, D. Kirkpatrick, and P. W. K. Rothemund, "Absolute and arbitrary orientation of single-molecule shapes," Science 371, eabd6179 (2020).
  286. B.-Y. Lee, J. Lee, D. J. Ahn, S. Lee, and M.-K. Oh, "Optimizing protein V untranslated region sequence in M13 phage for increased production of single-stranded DNA for origami," Nucleic Acids Res. 49, 6596-6603 (2021). https://doi.org/10.1093/nar/gkab455
  287. I. V. Martynenko, E. Erber, V. Ruider, M. Dass, G. Posnjak, W. Yin, P. Altpeter, and T. Liedl, "Site-directed placement of three-dimensional DNA origami," Nat. Nanotechnol. (2023).
  288. S. H. Park, H. Park, J.-M. Nam, Y. Ke, T. Liedl, Y. Tian, and S. Lee, "DNA origami-designed 3D phononic crystals," Nanophotonics 12, 2611-2621 (2023). https://doi.org/10.1515/nanoph-2023-0024
  289. F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartseld, A. Alu, and X. Li, "A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance," Nat. Nanotechnol. 8, 95-99 (2013). https://doi.org/10.1038/nnano.2012.249
  290. D. Vestler, A. Ben-Moshe, and G. Markovich, "Enhancement of circular dichroism of a chiral material by dielectric nanospheres," J. Phys. Chem. C 123, 5017-5022 (2019). https://doi.org/10.1021/acs.jpcc.8b10975
  291. Y. Tang and A. E. Cohen, "Optical chirality and its interaction with matter," Phys. Rev. Lett. 104, 163901 (2010).
  292. M. L. Solomon, A. A. E. Saleh, L. V. Poulikakos, J. M. Abendroth, L. F. Tadesse, and J. A. Dionne, "Nanophotonic platforms for chiral sensing and separation," Acc. Chem. Res. 53, 588-598 (2020). https://doi.org/10.1021/acs.accounts.9b00460
  293. D. Franklin, Z. He, P. M. Ortega, A. Safaei, P. Cencillo-Abad, S.-T. Wu, and D. Chanda, "Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states," Proc. Natl. Acad. Sci. USA 117, 13350-13358 (2020). https://doi.org/10.1073/pnas.2001435117
  294. P. Cencillo-Abad, D. Franklin, P. Mastranzo-Ortega, J. Sanchez-Mondragon, and D. Chanda, "Ultralight plasmonic structural color paint," Sci. Adv. 9, eadf7207 (2023).
  295. C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. F. König, and A. Fery, "Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly," Nano Lett. 14, 6863-6871 (2014). https://doi.org/10.1021/nl502776s
  296. P. T. Probst, M. Mayer, V. Gupta, A. M. Steiner, Z. Zhou, G. K. Auernhammer, T. A. F. Konig, and A. Fery, "Mechanotunable chiral metasurfaces via colloidal assembly," Nat. Mater. 20, 1024-1028 (2021). https://doi.org/10.1038/s41563-021-00991-8
  297. M. Y. B. Zion, X. He, C. C. Maass, R. Cha, N. C. Seeman, and P. M. Chaikin, "Self-assembled three-dimensional chiral colloidal architecture," Science 358, 633-636 (2017). https://doi.org/10.1126/science.aan5404
  298. E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, and T. Liedl, "DNA-assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies," Nano Lett 15, 1368-1373 (2015). https://doi.org/10.1021/nl5046473
  299. R. Schreiber, J. Do, E.-M. Roller, T. Zhang, V. J. Schuller, P. C. Nickels, J. Feldmann, and T. Liedl, "Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds," Nat. Nanotechnol. 9, 74-78 (2014). https://doi.org/10.1038/nnano.2013.253