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Abstract

The detection of all the symbols transmitted simultaneously in multiuser sys-

tems using limited wireless resources is challenging. Traditional model-based

methods show high performance with perfect channel state information

(CSI); however, severe performance degradation will occur if perfect CSI

cannot be acquired. In contrast, data-driven methods perform slightly worse

than model-based methods in terms of symbol error ratio performance in per-

fect CSI states; however, they are also able to overcome extreme performance

degradation in imperfect CSI states. This study proposes a novel deep

learning-based method by improving a state-of-the-art data-driven technique

called deep soft interference cancellation (DSIC). The enhanced DSIC

(EDSIC) method detects multiuser symbols in a fully sequential manner and

uses an efficient neural network structure to ensure high performance. Addi-

tionally, error-propagation mitigation techniques are used to ensure robust-

ness against channel uncertainty. The EDSIC guarantees a performance that

is very close to the optimal performance of the existing model-based methods

in perfect CSI environments and the best performance in imperfect CSI

environments.
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1 | INTRODUCTION

Multiuser multiple-input multiple-output (MU-MIMO)
technology is a key technology in modern wireless com-
munication systems. MU-MIMO has received consider-
able attention because it can provide high throughput
and spectral efficiency. However, several challenges are
found in realizing the attractive benefits of MU-MIMO in
practice. One of these is the simultaneous detection of

multiuser signals in an environment with interference
and incomplete channel-state information (CSI). Existing
multiuser symbol detection algorithms, such as maxi-
mum a posteriori (MAP), which is based on optimal rules
for joint recovery of symbols for all users, increase their
computational complexity to an impossible level as the
number of users increases. In addition, the technique
that recovers each symbol individually while considering
and processing the remaining symbols as noise can
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reduce the complexity but is limited by the decrease in
throughput. In imperfect CSI environments, serious per-
formance degradation may occur.

The successive interference cancellation [1] technique
removes interference from a received signal by demodu-
lating and/or decoding the desired information and by
using this information in conjunction with a channel
estimate. By utilizing this technique for multiuser symbol
detection, performance degradation can be alleviated and
complexity can be reduced. Specifically, the technique
sequentially removes hard decision values of user
symbols from the received signal detected previously;
however, error propagation may occur in this process. To
alleviate this problem, a method [2] that repeatedly uses
soft-decision values can be employed. Although this
method significantly mitigates error propagation with
controllable complexity and reduces the performance gap
compared with the optimal MAP performance, it still suf-
fers from severe performance degradation in imperfect
CSI environments, which can occur at high speeds.

Recently, significant progress has been achieved in
deep learning (DL) [3], which has been applied in many
areas. In particular, the remarkable success of DL in
challenging games, such as Go [4], Starcraft [5], and
computer vision [6], has transformed the existing model-
driven mindset into a data-driven mindset. Data-driven
methods have two advantages compared with model-
based approaches. First, data-driven techniques can work
in scenarios where modeling is unknown because the sys-
tem is difficult to interpret. Second, if the basic modeling
method is known but the system is very complex and has
not been sufficiently analyzed, data-driven algorithms
can be used to extract features from the observed data.

Many researchers in the field of wireless communica-
tion have attempted to apply DL to communication
technologies [7–10]. These attempts have included the
use of neural networks to design channel estimators [11],
channel denoisers [12], channel decoders [13, 14], and
end-to-end transceivers [15–18] to manage multiuser
interference [19–22] and design multiuser symbol detec-
tors [23–25]. In this study, we focused on the use of DL
for joint-symbol detection in multiuser MIMO systems.
DL-based detectors are anticipated to be a highly promis-
ing alternative to MAP detectors—which exhibit an
exponential increase in complexity as the number of
users increases—because these methods have linearly
increasing complexity with the number of users. Conven-
tional MAP detectors suffer from significant performance
degradation in environments with imperfect CSI. This is
because the posterior probability used in the MAP
detector does not adequately account for the impact of
the uncertain channel information. However, DL-based
detectors can prevent performance degradation by

improving the generalization performance if sufficient
training data are provided, even in situations wherein
only uncertain channel information is available. In con-
clusion, the ability to model wireless communication
environments ensures the generation of infinite training
data, which is advantageous for ensuring a robust perfor-
mance in imperfect scenarios [26, 27].

The recently proposed deep soft interference
cancellation (DSIC) technique [25] was reported to
demonstrate a performance close to that of the existing
iterative soft interference cancellation (ISIC) [2] and
exhibited outstanding performance even in imperfect CSI
environments. By improving the DL-based technique, we
propose a new model with near-optimal performance in
both perfect and imperfect CSI environments. The main
contributions of this study are as follows:

• The proposed scheme uses a new neural network
structure. To predict each user symbol in an interfer-
ence environment, one of the state-of-the-art
schemes, DSIC, uses a basic deep neural network
(DNN) model. However, to obtain high efficiency and
performance improvement, herein, we use a bidirec-
tional long short-term memory (biLSTM) model,
which is more suitable for time series data.

• The proposed scheme predicts each user symbol in
each iteration sequentially using the updated soft
estimates in the current iteration, instead of predict-
ing in parallel using the soft estimates in the previous
iteration. This method not only speeds up conver-
gence but also ensures the best performance within a
limited processing time period.

• Because the proposed scheme operates in a sequen-
tial manner, to address the problem of error propaga-
tion that might occur in sequential methods, we
applied mitigation techniques.

The remainder of this paper is structured as follows.
Section 2 presents our system model and reviews related
works. Section 3 proposes an enhanced DSIC (EDSIC)
that overcomes the limitations of DSIC. Section 4 outlines
the experimental results of the proposed EDSIC, and
Section 5 provides the concluding remarks.

2 | SYSTEM MODEL AND
RELATED WORKS

2.1 | System model

We consider a multiuser uplink MIMO system with K
users demonstrating a single transmit antenna and a base
station (BS) equipped with an array of N receiving
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antennas. For a linear channel with additive white
Gaussian noise (AWGN), the signals received at the BS
are represented as

y¼hsþw, ð1Þ

where h�RN�K is a channel matrix, s≜ s1,s2,…,sK½ �T is a
symbol vector of mutually independent elements drawn
from a discrete constellation set S ≜ fα1,α2,…,αMg, and
w�RN�1 is a noise vector of a zero-mean multivariate
Gaussian with covariance σ2wIN . In this study, we focused
on real-valued channel scenarios, and the system model
could be extended in a straightforward manner to
complex-valued channel scenarios. In addition, the time
index is omitted for simplicity. Figure 1 shows the system
model.

For a discrete memoryless channel, the received sig-
nal y is represented by the stochastic mapping of the
transmitted symbols s. Thus, we can express their rela-
tionship using the conditional probability measure
pyjs �j�ð Þ. Subsequently, we focus on the problem of indi-
vidual reconstruction of the transmitted symbols s by
each user from the received signals y. In ideal environ-
ments, the optimal symbol detector is the MAP detector,
which minimizes error probability. To describe this in
more detail, let psjyð�j�Þ be the posterior probability of s
given y. The MAP detector selects a set of symbols that
maximizes the posterior probability; that is,

ŝMAP ≜ arg max
s � SK

pðsjyÞ: ð2Þ

When the transmitted symbols demonstrate equal proba-
bilities, the MAP detector is equivalent to the maximum
likelihood detector.

Although the MAP detector ensures optimal perfor-
mance in ideal environments, it is still associated with
several limitations: it requires an exhaustive search MK ,
which is computationally infeasible, especially when K is
large, and it also requires accurate knowledge of chan-
nels that are sometimes difficult to obtain in real-world
communication environments.

2.2 | ISIC

Interference cancellation is an effective strategy for
implementing multiuser symbol detection with afford-
able computational complexity. This technique
performs joint symbol detection iteratively by recon-
structing each symbol based on the channel output and
estimates of the remaining interfering symbols. Specifi-
cally, by removing the effects of the estimated interfer-
ence, the algorithm uses the knowledge of the channel to
facilitate the recovery of each symbol in the received
signal.

To alleviate the phenomenon of error propagation
inevitably exhibited by traditional interference cancella-
tion techniques, a detector was proposed in [2] using soft
values for interference cancellation. This scheme,
referred to as ISIC, operates iteratively by combining
multilevel interference cancellation with soft decisions.
In each iteration, for every kth user, where
k�K≜ f1,2,…,Kg, an estimate of the conditional probability
of sk given y is calculated using the estimates of transmit-
ted symbols fslgl � K ∖ k from other users obtained in the
previous iteration and treated as interference for the kth
user. In addition, the reliability of the conditional proba-
bility estimates is improved by repeating this procedure
such that the symbol detector can accurately reconstruct
each transmitted symbol from the output of the last
iteration.

We assume that the ISIC detector comprises Q
iterations. In each iteration, the detector generates K
probability vectors p̂ðqÞ

k RM , k �K, q� f1,2,…,Qg. The
probabilities of p̂ðqÞ

k are estimates of the conditional
probability corresponding to sk for each possible symbol
in S when the received signal y is given, and the interfer-
ing symbols fslgl � K ∖ k are distributed via fp̂ðq�1Þ

l gl � K ∖ k .
Subsequently, each iteration comprises two stages per-
formed in parallel for each user. The first stage is interfer-
ence cancellation and the second stage is soft decoding.
For the qth iteration and kth user, the interference
cancellation stage respectively calculates the expected
values and variances of fslgl � K ∖ k by using the following
two equations,

eðq�1Þ
l ¼

X
αm � S

αm � p̂ðq�1Þ
l

� �
αm
, ð3Þ

and

vðq�1Þ
l ¼

X
αm � S

αm� eðq�1Þ
l

� �2
� p̂ðq�1Þ

l

� �
αm
, ð4ÞF I GURE 1 An uplink multiuser multiple-input multiple-

output system model.
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Denoting hl as the lth column of h, the channel
output following interference cancellation can be repre-
sented as

zðqÞk ≜ y�
X

l � K ∖ k
hle

ðq�1Þ
l : ð5Þ

In the soft-decoding stage, the estimated conditional
probability is calculated as

p̂ðqÞ
k

� �
αm

≜ pðsk ¼ αmjyÞ¼ pðzðqÞk jαmÞP
αm0pðzðqÞk jαm0 Þ

¼
exp �1

2
zðqÞk �hkαm

� �T
Σ�1
W ðqÞ

k

zðqÞk �hkαm
� �� �

P
αm0 � S

exp �1
2

zðqÞk �hkαm0
� �T

Σ�1
W ðqÞ

k

zðqÞk �hkαm0
� �� � ,

ð6Þ

where

Σ�1
W ðqÞ

k

¼ σ2nIN þ
X

l � K ∖ k
vðq�1Þ
l hlh

T
l : ð7Þ

Each symbol is detected after the final iteration Q by
using a symbol in S that maximizes the estimated condi-
tional probability:

ŝk ¼ arg max
αm � S

p̂ðQÞ
k

� �
αm
: ð8Þ

The entire process of ISIC described above is summa-
rized in Algorithm 1.

The ISIC detector is a model-based multiuser symbol
detector that significantly reduces complexity via the

above iterative operations. However, because the symbols
are estimated using channel information, they still suffer
from severe performance degradation in imperfect CSI
environments, such as cases wherein MAP detectors
are used.

2.3 | Deep hard interference
cancellation (DHIC)

Successive interference cancellation is another effective
method used to detect multiuser symbols. To avoid con-
fusion, we refer to this method as hard interference can-
cellation (HIC). Using this technique, the receiver first
detects a symbol with the maximum channel gain, sub-
tracts the detected symbol from the received signal, and
then sequentially detects the remaining symbols. Follow-
ing the basic concept of HIC, [23, 24] proposed DL
approaches for downlink signal detection in MU-MIMO-
NOMA. In both [23] and [24], only the downlink envi-
ronment was considered, particularly in [23], where only
two users were assumed. In [24], it was extended to K
users. Therefore, we modified the model by considering
the uplink environments for K users. We refer to this
technique as DHIC. Figure 2 describes the structure
of DHIC.

The DHIC sequentially detects user symbols using as
many DNN blocks as possible. Each DNN block consisted
of fully connected neural networks. A single DNN block
was used for each user. The output of each DNN block
represents the detected symbol for the corresponding
user, and the input is the received signal after all previ-
ously detected symbols are subtracted. This operation is
performed sequentially. Therefore, the input for the cur-
rent DNN block can be obtained by subtracting the out-
put of the previous DNN block from the input. In other
words, starting with the user with the highest channel
quality, the process sequentially detects the transmitted
symbols of a single user at each stage using separate
DNN blocks. Algorithm 2 summarizes the DHIC
procedure.

F I GURE 2 Structure of deep hard interference cancellation

(DHIC)
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2.4 | DSIC

A DL-based soft interference cancellation scheme, referred
to as DSIC, was recently proposed in [25]. It replaces the
model-based computations in ISIC by learning the DNNs.
Neural networks predict multiuser symbols by learning
only the relationship between the input and output data
without prior knowledge of channel information. Figure 3
illustrates the DSIC architecture. Two types of DSIC were
identified. The first type uses end-to-end training, whereas
the second uses sequential training. In this study, we
renamed the sequential training in [25] as iterative train-
ing to prevent confusion with our fully sequential method.

The end-to-end scheme simultaneously updates the
parameters θ of Q neural network blocks, each consisting
of K DNN subblocks, and thus exhibits a cost function
via

L θð Þ¼ 1
J

XJ
j¼1

XK
k¼1

�log p̂ðQÞ
k yj, p̂ð0Þ

j,l

n o
l � K ∖ k

,ðŝjÞk;θ
� �

, ð9Þ

where p̂ðQÞ
k yj, p̂ð0Þ

j,l

n o
l � K ∖ k

,ðŝjÞk;θ
� �

is the estimated con-
ditional probability corresponding to the estimated sym-
bol ðŝjÞk at the kth subblock when the jth training data
sample yj and initial probabilities p̂ð0Þ

j,l

n o
l � K ∖ k

are given.

If the initial probabilities are consistently selected from a
uniform distribution, the term can be omitted from the
input. Finally, J denotes the number of training data
samples.

Compared with end-to-end training, which jointly
learns all trainable parameters, iterative training uses the
same set of data to tune neural network blocks
individually with trainable parameters. This approach
requires significantly fewer training data samples at the
expense of performance degradation and potential delays
resulting from iterative tasks. At the qth iteration, the
cost function of the iterative training is represented
according to

L θðqÞk

� �
¼ 1
J

XJ

j¼1

�log p̂ðqÞ
k yj, p̂ðq�1Þ

j,l

n o
l � K ∖ k

,ðŝjÞk;θðqÞk

� �
,

ð10Þ

where p̂ðqÞ
k yj, p̂ðq�1Þ

j,l

n o
l � K ∖ k

,ðŝjÞk;θðqÞk

� �
is the currently

estimated conditional probability corresponding to the
estimated symbol ðŝjÞk at the kth subblock when jth
training data sample yj and the previously estimated
probabilities p̂ðq�1Þ

j,l

n o
l � K ∖ k

are given, and J is the num-
ber of training data samples.

In iterative training, the output of the previous itera-
tion was used as the input data for the subsequent itera-
tion, and served as a soft estimate. In particular, kth DNN

of qth neural network block produces p̂ðqÞ
k from the given

ŷ and p̂ðq�1Þ
l

n o
l � K ∖ k

, which is depicted in Figure 4. The

resulting procedure is summarized in Algorithm 3.

As mentioned in [25], the DSIC detector is substan-
tially more robust to channel uncertainty than the ISIC
and MAP detectors; however, in the case of perfect CSI, a
considerable performance gap was found with ISIC as
well as the MAP detectors.

F I GURE 3 Deep soft interference cancellation (DSIC)

structure.
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3 | EDSIC

We propose herein an enhanced scheme called EDSIC
that improves the DSIC performance. Instead of DNN,
we used biLSTM in DSIC for more effective learning.
Instead of predicting soft estimates in parallel, as in DSIC,
our EDSIC predicts soft estimates in a sequential manner.
Using this concept, the convergence speed was acceler-
ated to obtain accurate estimates. In other words, the per-
formance can be optimized within a limited processing
time. The basic structure of EDSIC is similar to that of
DSIC in Figure 3. However, as shown in Figures 4 and 5,
significant differences exist in the detailed structures.

The EDSIC detector involves three steps: sorting, esti-
mation, and relaxation. In the first step, the user indices
are sorted in descending order according to their channel
quality. This preferentially predicts the symbols of users
that are expected to be more accurate. In the second step,
a soft estimate for each user is sequentially predicted
using biLSTM. Figure 6 shows a detailed depiction of the
biLSTM block. Unlike LSTM which has only forward

layers, biLSTM performs the training simultaneously on
both the forward and backward layers. During the testing
phase, the same structure generates an output from a
given input without updating any parameters and predicts
the symbol values of each user. Finally, in the relaxation
step, the soft estimate is updated by calculating the
weighted sum of the predicted values from the current
and previous iterations. Herein, we used a relaxation coef-
ficient γ with a value between zero and one. The relaxa-
tion block is denoted by R in Figure 5. In Figure 5, Φ
denotes the sorting function and Φ�1 is a function of the
inverse Φ. Our approach is summarized in Algorithm 4.

F I GURE 5 Detailed structure of the qth neural network block

for the enhanced DSIC (EDSIC)

F I GURE 6 Detailed structure of biLSTM block in the qth

neural network block for EDSIC.

F I GURE 4 Detailed structure of the qth neural network block

used for DSIC.
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4 | EXPERIMENTAL RESULTS

We evaluated the performances of the MAP, ISIC, DHIC,
DSIC, and those of the proposed EDSIC detectors. We
considered two types of linear channels with AWGN: a
4�4 channel (i.e., K ¼ 4 users and N ¼ 4 receiving anten-
nas) and an 8�8 channel. For the transmitted symbol
set, we used a constellation of binary phase-shift keying
modulations, namely S ¼f�1,1g. To model the spatial
exponential decay, we used a channel matrix h in which
the elements are represented as follows,

hi,j ¼ e�ji�jj, i� f1,…,Ng, j� f1,…,Kg: ð11Þ

We compared the symbol error rates (SERs) of the
symbol detectors considered for both the perfect CSI and
imperfect CSI cases. In the case of imperfect CSI, we
assumed that the detectors can obtain an estimate of h
with elements contaminated by independent and identi-
cally distributed additive Gaussian noise with variance
σ2e . Herein, σ2e refers to the variance in channel estimation
errors that may occur in practical communication
systems.

For both the DHIC and DSIC, we used a neural net-
work structure consisting of three fully connected layers,
as proposed in [25]. In this structure, each layer has
100 � ðNþðK�1Þ � ðM�1ÞÞ, 5000, and 50M nodes. where
M is the number of possible labels, which is the size of
the constellation set. For the proposed EDSIC, we used
biLSTM for the first layer and two fully connected layers.
Each layer yielded ð500þ6 �N �K �MÞ, 100M, and 10M
nodes. Table 1 summarizes the comparison between the
number of nodes for DSIC and EDSIC. As shown in
Table 1, the proposed EDSIC has relatively few parame-
ters, which enables low complexity, fast convergence dur-
ing training, and model stability.

For DHIC, DSIC, and EDSIC, we used the Adam opti-
mizer with a learning rate of 0.01 and performed
100 epochs of training. We set the number of training

samples J to 5000. For DSIC and EDSIC, we set the num-
ber of iterations Q to 6. For the activation function of the
EDSIC, sigmoidal and rectified linear units were used, as
in [25]. In addition, we set the value of the relaxation fac-
tor γ to 0.1 for EDSIC.

Figure 7 shows the SER performances of the detectors
over the 4�4 linear channel with AWGN in the perfect
CSI case. In Figure 7, the performance of EDSIC
approaches that of the ISIC, which is close to the optimal
MAP performance. In particular, the optimal MAP detec-
tor achieved an SER of 10�3 at a signal-to-noise ratio
(SNR) of 10.25 dB, whereas ISIC, DHIC, DSIC, and the
proposed EDSIC required SNR values equal to 10.6 dB,
12.6 dB, 11.4 dB, and 11 dB, respectively. Figure 8 shows
the detectors’ SER performances over the 4�4 linear
channel with AWGN for the imperfect CSI case. In this
case, the proposed EDSIC demonstrates the best perfor-
mance among all the detectors, including the MAP

TAB L E 1 Comparison of the number of nodes for deep hard interference cancellation (DHIC), deep soft interference cancellation

(DSIC), and enhanced DSIC (EDSIC).

K ¼ 4, N ¼ 4, K ¼ 8, N ¼ 8,

M¼ 2 M¼ 2

DHIC/DSIC EDSIC DHIC/DSIC EDSIC

First layer 700 692 2300 2228

Second layer 5000 200 5000 200

Third layer 100 20 100 20

Total 5800 912 7400 2448

F I GURE 7 Performance comparison of maximum a posteriori

(MAP), soft interference cancellation (ISIC), DHIC, DSIC, and that

of the proposed EDSIC over the 4�4 linear channel with additive

white Gaussian noise (AWGN) in the perfect channel-state

information (CSI) case.
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detector, in the perfect CSI case. To achieve an SER of
3�10�4, DHIC, DSIC, and the proposed EDSIC require
SNR values, which are approximately equal to 14, 12.8,
and 12 dB, respectively.

Based on a comparison of Figures 7 and 8, we can
observe that model-based methods are designed subject to
the assumption of perfect CSI, which leads to significant
performance degradation in imperfect CSI environments.
By contrast, data-driven methods can maintain their per-
formances even when trained using incomplete data.

Figures 9 and 10 show the performance of the SER
when the number of users and the number of receiving
antennas are doubled as compared with the scenario in
Figures 7 and 8. The results confirm that the performance

deteriorates as the number of users increases, especially
when channel information is insufficient. Even in this
scenario, for the imperfect CSI case, the proposed EDSIC
outperforms the DSIC and yields the best performance
among all detectors, including the MAP detector, in the
perfect CSI case. In particular, to achieve an SER of
6�10�4, DHIC, DSIC, and the proposed EDSIC require
SNR values approximately equal to 14, 12.4, and 12 dB,
respectively.

The authors of [25] confirmed that the DSIC can
effectively track time-varying channels using small train-
ing datasets. In this study, by using a BiLSTM structure,
which is more suitable for time-series data than the DNN
structure used by the DSIC, we found that the proposed

F I GURE 1 0 Performance comparison of MAP, ISIC, DHIC,

DSIC, and that of the proposed EDSIC over the 8�8 linear channel

with AWGN in the imperfect CSI case.

F I GURE 8 Performance comparison of MAP, ISIC, DHIC,

DSIC, and that of the proposed EDSIC over the 4�4 linear channel

with AWGN in the imperfect CSI case.

F I GURE 9 Performance comparison of MAP, ISIC, DHIC,

DSIC, and that of the proposed EDSIC over the 8�8 linear channel

with AWGN in the perfect CSI case.

F I GURE 1 1 Performance comparisons of MAP, ISIC, DHIC,

DSIC, and that of the proposed EDSIC over the 4�4 time-varying

channel with AWGN in the imperfect CSI case.
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EDSIC further improved this advantage. To verify the
performance, we used a set of coded signals generated by
the low-density parity-check codes in [28]. The channel
observed in the bth frame was modeled as a channel
matrix hðbÞ, and its elements are expressed as follows:

hðbÞi,j ¼ e�ji�jj � jcosðΦi �b ðmod4ÞÞj, ð12Þ

where i� f1,…,Ng, j� f1,…,Kg, Φ¼ ½63,66,69,72� for the
case N ¼ 4. It is defined in a form similar to that in [25].
As shown in Figure 11, the proposed EDSIC also yielded
the best performance, even in time-varying channels
where channel uncertainty exists. Compared with
Figure 8, it can be observed that the performance gap
with DSIC is larger than that of time-invariant channels.
In particular, we confirmed that the SNR performance
improvement of approximately 1.4 dB corresponded to a
SER of 3�10�5.

5 | CONCLUSIONS

In this study, we proposed an enhanced DSIC scheme
(EDSIC) for multiuser symbol detection. The sequential
structure and biLSTM neural networks, which are suit-
able for time-series data, accelerated receiver learning. In
addition, to prevent the error propagation that may occur
in sequential approaches, we used a relaxation update
technique. The simulation results demonstrated that in
the case of the time-varying channel, the proposed
EDSIC outperformed the DSIC by approximately 1.4
dB. The MAP scheme exhibited the best performance in a
perfect CSI environment. However, when the channel
estimation was inaccurate, the MAP and ISIC schemes
demonstrated a very large performance degradation;
thus, the proposed scheme was considered to be the most
useful in practical communication environments. In our
future work, we will conduct a comprehensive analysis
and experiments on the performance of the proposed
EDSIC in various real-world wireless channel environ-
ments, including satellite-terrestrial or drone-to-drone
channels.
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