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Abstract

Non-orthogonal multiple access (NOMA) is considered a key candidate tech-

nology for next-generation wireless communication systems due to its high

spectral efficiency and massive connectivity. Incorporating the concepts of

multiple-input-multiple-output (MIMO) into NOMA can further improve the

system efficiency, but the hardware complexity increases. This study develops

an energy-efficient (EE) subchannel assignment framework for MIMO-NOMA

systems under the quality-of-service and interference constraints. This frame-

work handles an energy-efficient co-training-based semi-supervised learning

(EE-CSL) algorithm, which utilizes a small portion of existing labeled data

generated by numerical iterative algorithms for training. To improve the learn-

ing performance of the proposed EE-CSL, initial assignment is performed by a

many-to-one matching (MOM) algorithm. The MOM algorithm helps achieve

a low complex solution. Simulation results illustrate that a lower computa-

tional complexity of the EE-CSL algorithm helps significantly minimize the

energy consumption in a network. Furthermore, the sum rate of NOMA out-

performs conventional orthogonal multiple access.

KEYWORD S
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1 | INTRODUCTION

Most past research efforts have been directed toward
developing new standards in fifth-generation (5G) com-
munication systems to accommodate the rapid growth of
traffic data volume. Massive multiple-input-multiple-
output (MIMO) and non-orthogonal multiple access
(NOMA) systems are two potential candidate technolo-
gies for the success of 5G and beyond 5G networks [1–4].
Hence, they have been recently researched by the

industry and academia. These two techniques interope-
rate to meet the future demands of Internet of Things
(IoT) devices. NOMA has been considered a key candi-
date technology that supports the transmission of multi-
ple users simultaneously over same spectral resources. It
also allows multiple users to be multiplexed on a com-
mon channel using superposition coding and successive
interference cancelation techniques at a transmitter and
a receiver, respectively. In NOMA, multiple user’s infor-
mation is superimposed in a power domain using their
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corresponding channel gain differences. At the receiver,
a self-interference cancelation (SIC) method of detection
is implemented for inter-user interference cancelation.
NOMA achieves high spectral efficiency, but the receiver
complexity increases. Meanwhile, MIMO has been con-
sidered a pragmatic scheme to transmit high-speed data
streams using a large-scale antenna array. It also helps
achieve significant improvement in throughput without
any increase in resources (e.g., power and spectrum).
Incorporating the concepts of NOMA into MIMO will
further improve the sum rate performance of the system.
Resource allocation (RA), which represents the main
theme of this study, plays a pivotal role in attaining the
benefits offered both by MIMO and NOMA.

1.1 | Related works and motivations

1.1.1 | Studies on conventional NOMA

Different key candidate NOMA schemes have been com-
prehensively investigated in the literature.
Moraqa and others [5] demonstrated the impact of power
domain NOMA on different enabling communication
technologies. They also addressed the maximum achiev-
able rates using optimization techniques. Several smart
techniques have been presented to improve the energy
efficiency (EE) and end-to-end delays in both uplink and
downlink NOMA [6]. A novel low complexity decoding
structure, wherein an arbitrary number of users served in
a spectrum, was proposed for NOMA [7]. Wan
and others [8] introduced a unique NOMA scheme
wherein an entire band is divided into different sub-
bands. To improve the fair user rate, information symbols
that correspond to a fair user rate are transmitted based
on a repetition-based scheme in all sub-bands. A coopera-
tive relay-based NOMA system was presented in Wan
and others [9], and its outage performance and ergodic
sum were analyzed for both decode-and-forward and
amplify-and-forward relaying protocols.

1.1.2 | Studies on MIMO-NOMA

An efficient 3D (i.e., time, frequency, and power) RA
scheme was proposed for MIMO-NOMA systems [10].
This scheme aims to realize an alternative for NOMA-
based relaying protocols. However, an EE maximization
problem was formulated, along with a user admission
policy [11] for multi-user MIMO-NOMA systems. A
multi-dimensional RA problem was formulated to maxi-
mize the sum effective capacity of all users in a MIMO-
NOMA cluster [12]. Further, an energy-efficient power

optimization problem was formulated as a fractional pro-
gramming problem for a millimeter-wave MIMO-NOMA
system and was solved using sequential convex approxi-
mations [13].

1.1.3 | Studies on conventional approaches
of RA

A joint subchannel and power allocation problem was
formulated for a downlink NOMA system, and a subopti-
mal solution was proposed by utilizing various tech-
niques (e.g., dual-decomposition techniques [14],
introducing slack variables [15], geometric programming
[16], simulated annealing algorithm, and a sequence con-
vex approximation programming method [17]). A
dynamic resource optimization scheme was designed
based on minimum transmit power and maximum EE
[18, 19]. A heuristic RA was proposed for hybrid NOMA
in Shi and others [20]. Subchannel allocation based on
matching theory was provided in Zhao and others. [21]
for D2D communications.

However, these methods are iterative and hence are
convoluted in obtaining a suboptimal solution. Thus,
these conventional methods of RA are inefficient for
future wireless communication systems. These methods
also depend on expert knowledge in modeling such
dynamic systems. Thus, the fundamental attribute of a
future wireless system is its ability to learn a new model.

1.1.4 | Studies on deep learning-based RA

Motivated by these considerations, new theories, which
can improve the performance of RA systems, should be
considered. Recently, machine learning (ML) has been
proved to be an efficient method in solving complex
mathematical problems. To meet the requirements of
future wireless systems, the most important task is to
enable ML techniques to make intelligent decisions. Deep
learning (DL), a branch of ML, learns features from a set
of large volumes of labeled training data. In a previous
literature [22–26], a deep neural network (DNN) was
designed to solve an RA problem. However, these exist-
ing studies did not consider the effect of high power con-
sumption on EE. Moreover, the performance of this
learning depends on the number of labeled samples, and
training a new model is extremely expensive due to the
complexity of training data models in a DNN.

Deep reinforcement learning [27, 28], a subset of ML,
utilizes the concepts of DL to make decisions from
unstructured data. Although it requires less amount of
labeled samples, the size of the state space has a major
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impact on the performance of this algorithm. Most of the
existing RA literature is mainly focused on exhaustive
search (ES) methods and a DNN model. Nevertheless, a
large volume of labeled training datasets should be
obtained for a complex space.

1.2 | Contributions

Motivated by futuristic DL technologies, we attempt to
fill the gap in the existing literature. In this study, we
attempt to reduce the computation time and improve the
learning performance by using a finite amount of labeled
training samples.

To the best of our knowledge, no studies have
explored a subchannel allocation problem for MIMO-
NOMA systems using a DL model. The following is the
summary of the innovative aspects of this study:

• We propose a multi-dimensional subchannel alloca-
tion framework that maximizes the EE for down-
link MIMO-NOMA systems.

• To address this optimization problem, we develop
an energy-efficient DL framework under the pre-
mise of addressing the quality-of-service (QoS) and
interference limitations.

• To improve the learning performance of a DL
framework, we introduce a semi-supervised learn-
ing algorithm, called EE-CSL, that focuses on the
problem of lacking labeled data. A co-training-based
method of learning is considered for the subchannel
allocation.

• To maximize the total sum rate of the system, we
formulate a matching algorithm for the initial
assignment of subchannel allocation in a semi-
supervised learning model. We also attempt to
explore the ability of this matching algorithm in
improving the overall system performance.

• We demonstrate that the proposed EE-CSL algo-
rithm can achieve better EE performance. We also
provide a performance comparison of the proposed
framework with several other different schemes.
Some useful insights on the significance of the
matching algorithm for the proposed subchannel
allocation framework are also provided.

The remainder of the paper is organized as follows.
System model and mathematical problem formulation
are presented in Section 2. Section 3 provides the sub-
channel allocation framework and solution approach that
uses a co-training-based learning scheme. Extensive sim-
ulation results are demonstrated in Section 4, and finally
Section 5 concludes the paper.

2 | SYSTEM MODEL

Consider a typical downlink MIMO-NOMA-based het-
erogeneous IoT network wherein a base station (BS) is
equipped with N transmit antennas (Figure 1). BS trans-
mits data to multiple receivers, each equipped with Nr

receive antennas that receive the desired signal using a
successive interference cancelation (SIC) algorithm. To
avoid complex beamforming issues, the number of
receive antennas should be greater than the number of
transmitter antennas N r ≥Nð Þ.

Assume that U users are randomly distributed around
the BS and they are grouped into N clusters based on a
user pairing (UP) strategy. The set of clusters is denoted by
1, 2, …, Nf g. L users exist in a cluster, and NOMA is
applied among the users in a cluster. That is, all L users
in a cluster utilize the same spectral resources. The users
are clustered based on the strength of the channel gains.
User sets with higher and poor channel gains are called
strong and weak user sets, respectively. Channel gains
are sorted in descending order, and users are partitioned
into weak and strong users set such that an equal number
of users fall in each set. The red line in Figure 1 indicates
the boundary between strong and weak user sets. UP is
performed based on the binary dislocation principle [29];
that is, the first user in a strong user set is paired with the
(U/2+ 1)th user in a weak user set, and the second user
in a strong user set with the (U/2+ 2)th user in a weak
set until no user is left out. Consider that the total band-
width of the system be BT and k be the number of sub-
channels. It is assumed that a subchannel is occupied
by L (maximum of 3) users simultaneously through SIC

F I GURE 1 System model.
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to reduce the interference among users. The bandwidth
of a subchannel bkn,lrepresents the subchannel allocation
strategy between the lth user in a cluster N and subchan-
nel k. A learning algorithm is implemented at the BS,
which decides the subchannel allocation policy of users.

2.1 | System description

Let PN�N be the precoding matrix used by the BS, which
superimposes the intended signals of all L users at the
same resource block. This superimposed signal is given
as follows:

x¼PM, ð1Þ

where M is the message vector, which can be expressed
as follows:

M¼

ffiffiffiffiffiffiffiffiffiffiffi
ptα1,1

p
m1,1þ ffiffiffiffiffiffiffiffiffiffiffi

ptα1,1
p

m1,1þ…þ ffiffiffiffiffiffiffiffiffiffiffiffi
ptα1,L

p
m1,L

..

.

ffiffiffiffiffiffiffiffiffiffiffiffi
ptαN ,1

p
mN ,1þ ffiffiffiffiffiffiffiffiffiffiffiffi

ptαN ,2
p

mN ,2þ…þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ptαN ,L

p
mN ,L

2
6664

3
7775

¼
M1

..

.

MN

2
6664

3
7775,

where pt represents the total transmit power allocated for
each cluster and αn,lis the power allocation coefficient for
user n, lð Þ. Hence, the following power Constraint is
satisfied: XL

l¼1
αn,l ≤ 1, 8n�N : ð2Þ

2.2 | SINR analysis and channel model

Let Hn,l be the channel matrix of the lth user in the nth
cluster, and it follows Rayleigh fading distribution. The
received signal at the lth user in the nth cluster can be
given as

ykn,l ¼ bkn,ldn,l H
k
n,lxþnn,l

� �
, ð3Þ

wheredn,l represents the detection vector of the received
signal, bkn,l is the channel assignment index, andnn,l indi-
cates a circularly symmetric complex Gaussian noise

vector with variance σ2. The above equation can be
rewritten as follows:

ykn,l ¼ bkn,ldn,lHn,lPnMnþdn,lHn,l

XN

i¼1,i≠ n
bki,lPiMiþdn,lnn,l

¼ bkn,ldn,lHn,lPn
ffiffiffiffiffiffiffiffiffiffiffi
αn,lpt

p
mn,lþbkn,ldn,lHn,lPn

XL

j¼1, j≠ l
Mn,j

þdn,lHn,l

XN

i¼1,i≠ n
bki,lPiMiþdn,lnn,l

ð4Þ

where Pn is the precoding matrix of the nth cluster. Strong
users can be decoded perfectly by the SIC algorithm, and
the intra-cluster interference can be suppressed effectively
from a weak user’s channel gains. By considering the lth
user component of a cluster and the rest of the user’s com-
ponent separately, (4) can be written as follows:

ykn,l ¼ bkn,ldn,lHn,lPn
ffiffiffiffiffiffiffiffiffiffiffi
αn,lpt

p
mn,lþbkn,ldn,lHn,lPn

XL�1

j¼1

ffiffiffiffiffiffiffiffiffiffiffi
αn,jpt

p
mn,j

þdn,lHn,l

XN

i¼1,i≠ n
bki,lPi

ffiffiffiffiffiffiffiffiffiffi
αi,lpt

p
mi,lþdn,lnn,l:

ð5Þ

The signal-to-interference-plus-noise ratio (SINR) Γn,l of
the lth user in the nth cluster is defined in (9).

Therefore, the achievable data rate of the lth user in
the nth cluster is expressed as

Rk
n,l ¼ log2 1þΓn,l½ �: ð6Þ

We define the achievable sum rate of the system as

Rsum ¼
XK

k¼1

XN

n¼1

XL

l¼1
Rk
n,l: ð7Þ

The capacity of the lth user on subchannel k is given as

Ck
n,l ¼BT log2 1þΓn,l½ � 8n�N , ð8Þ

whereBT is the total system bandwidth.

Γn,l ¼ j dn,lHn,lð ÞPnj2αn,lpt
bkn,lj dn,lHn,lð ÞPnj2

PL�1
j¼1 αn,jptþ

PN
i¼1,i≠ nb

k
i,lj di,lHi,lð ÞPij2αi,lptþjdn,lσnj2

: ð9Þ

2.3 | Problem formulation

The total EE of the system is formulated as
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En¼
Rsum

PtþPc
, ð10Þ

where Pt is the total transmit power and Pc represents the
power consumption by the circuit components, such as
mixers, analog to digital converters, and filters. To achieve
the maximum EE for a MIMO-NOMA system, this sub-
channel allocation problem is formulated as follows:

maxEn tð Þ, ð11Þ

s:t: C1 :
XL

l¼1
bkn,l ≤L 8k�K,n�N

C2 : bkn,l � 0,1f g 8k �K, l�L,n�N

C3 :
XN

n¼1

XL

l¼1
bkn,l ¼ 18k �K

C4 :
XN
n¼1

XK
k¼1

bkn,lC
k
n,l ≥Rmin 8l�L:

Constraint (C1) guarantees that the maximum number of
users allocated for a subchannel is L, Constraint (C2) is
the binary subchannel assignment factor, Constraint (C3)
specifies that at most one subchannel can be assigned for
a cluster, and Constraint (C4) imposes a minimum data
rate requirement on each user in a cluster.

3 | SUBCHANNEL ALLOCATION
FRAMEWORK

In this section, we solve the aforementioned optimization
problem using a novel co-training-based semi-supervised
learning algorithm, called EE-CSL. This problem is a
non-convex optimization problem, and its complexity
increases with an increase in the number of MIMO-
NOMA clusters. A semi-supervised method of learning is
utilized here for subchannel assignment, along with co-
training [30], which uses two independent classifiers. The
initial assignment of the subchannel is generated by the
Many-to-one matching (MOM) algorithm, which is pro-
vided in the following subsection.

3.1 | MOM algorithm for subchannel
allocation

This subsection discusses the MOM algorithm [31] wherein
subchannel allocation is considered based on the utility fac-
tor. This MOM algorithm is depicted in Figure 2. MIMO-
NOMA clusters and subchannels are considered two sets of
players. They interact with each other such that their
respective utility is maximized. To increase the total sum
rate, the dynamic matching between the MIMO-NOMA
clusters and subchannels is formulated using the MOM

algorithm, and it is addressed using the proposed algorithm.
In the MOM algorithm, MOM function Ω is formed such
that jΩ kð Þj≤L, 8kϵK, where L is the maximum number
of users accommodated in a cluster without interference
andΩ kð Þ¼ ; if the subchannel k is not matched to any
cluster. To improve the performance of MIMO-NOMA-
based heterogeneous IoT networks, the preference lists of
user-subchannel groups are formed based on achievable
data rate. The set of preference lists of MIMO clusters
and subchannels is listed in Table/Figure X.

PL¼ P n1ð Þ,P n2ð Þ,…,P nNð Þ,P k1ð Þ,P k2ð Þ,…,P kKð Þf g: ð12Þ

The preference lists of players are created in a decreasing
order of their utility on a particular subchannel k. The
utility function of a MIMO-NOMA cluster on subchannel
k is defined as its achievable data rate when it occupies
subchannel k, which is given as

Un,l kð Þ¼
XL

l¼1
log2 1þΓn,l½ �: ð13Þ

As observed from this equation, the utility factor depends
on its matched subchannel and the set of MIMO-NOMA
clusters that are matched to the same subchannel. As this
algorithm provides more preference for larger data rates,
the semi-supervised learning method is initialized with
an energy-efficient subchannel assignment. This MOM
algorithm is depicted in the following figure (Figure 2),
and the steps are summarized in Algorithm 1.
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Lemma. MOM algorithm-based subchannel
assignment improves the EE of MIMO-NOMA
systems.

Proof. Let the subchannel assignment for the
nth cluster without considering the utility fac-
tor (random allocation) be k*. Specifically, the
utility function of the nth cluster in the k�

subchannel is ▪

Un,l Ω�,k�ð Þ¼
XL

l¼1
log2 1þΓn,l k

�ð Þ½ �: ð14Þ

To create a preference list for subchannel allocation,
the maximum value of the utility function is considered.
After finding a perfect match for the nth cluster in the k�

subchannel,

Un,l Ω,k�ð Þ¼
XL

l¼1
log2 1þΓn,l k

�ð Þ½ �: ð15Þ

As observed from the MOM algorithm,

Un,l Ω�,k�ð Þ<Un,l Ω,k�ð Þ: ð16Þ

As the achievable sum rate is increased after finding a
better match using the MOM algorithm, EE is also
improved.

This MOM algorithm generates a set of labeled data-
sets labelf g¼ H1,S1ð Þ, H2,S2ð Þ,…, H jLj,SjLj

� �� �
. Users

that are not assigned with subchannels are called
unlabelf g dataset = H 0

1,H
0
2,…,H 0

jUj
n o

. Here, Hi repre-
sents the channel gain of the ith group, which contains

all hkn,l generated by the ith initialization, and L and U
are the number of data samples present in the label and
unlabel datasets. The concept is to develop a learner Xs :

H! S that can predict the accurate label for an unla-
beled input. This learning algorithm is detailed in the
subsequent subsection.

3.2 | Co-training-based learning scheme
for subchannel assignment

This subsection discusses the subchannel allocation
scheme using EE-CSL. This proposed DL scheme is a
novel co-training-based semi-supervised learning regres-
sion algorithm. This method can have a great practical
value if only a small portion of labeled data that are gen-
erated by numerical iterative algorithms exists. In this
method, only a small portion of existing labeled data is
utilized to label the rest of the unlabeled data. This
method helps address the problem of the weak generali-
zation ability of the supervised learning method.

To address the subchannel allocation problem, the opti-
mization problem defined in (12) is converted into a loss
function in the DL model. The loss function is given as

min

bS bS�arg max s En

			 			2
s:t:C1�C4,

ð17Þ

where bS is the predicted subchannel assignment strategy.
A co-training-based learning method is preferred when
the labeled data are limited. In this method, two classi-
fiers are trained based on two independent views of data.
Then, the labeled data with the most confident predictions
of each classifier are selected based on some criteria. Once
labeling is completed, the model is updated such that the
newly labeled data of one classifier are placed into another
classifier’s labeled dataset. An important aspect of co-
training lies in electing the most confident samples. The
most consistent labeled sample in the training data must
be the most confident sample. The rule for predicting the
most confident sample is defined as follows:

1
jlabelj

X
xi � labels

Si�X Gið Þð Þ2

� 1
jlabelj

X
xi � labels

Si�X 0 Gið Þð Þ2, ð18Þ

where X and X ’ represent the learning and retrained
models, respectively. A retrained model is trained by using
the labeled dataset generated from model X. It is included
in ideas of Zhou’s research [32] that considered initial neu-
ral network models should have comparatively large

F I GURE 2 Subchannel allocation.
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differences. These model differences are evaluated using
different neural network parameters and different hidden
layers. Hence, two different views exist, and each sample
can be accurately classified from each view alone. The
proposed co-training-based semi-supervised DL algorithm
for subchannel allocation is outlined in Algorithm 2.

3.3 | Complexity analysis

This subsection discusses the asymptotic time complexity
of the proposed EE-CSL algorithm, which is based on co-
training-based semi-supervised learning algorithm. The
time complexity of a neural network can be represented
by floating-point operations (FLOPs). The time complex-
ity of the proposed EE-CSL algorithm is computed as
follows:

In general, the number of FLOPs for each layer of a
neural network depends on the dimension of the input
and output. The number of FLOPs for each layer of the
neural network is expressed as follows:

FLOPs¼ 2IiOi,

where Ii and Oi are the input and output dimension of
the ith layer, respectively. Thus, the number of FLOPs
required for the proposed EE-CSL algorithm is expressed
as follows:

FLOPs¼ 2
X3
i¼1

IiOiþ
X4
i¼1

IiOi

!

¼ 2 U= Kþ1ð Þn1þn21þU= Kþ1ð Þn2þn22
� �

,

where n1and n2are the number of neurons in neural net-
works X1and X2, respectively.

The time complexity of the MOM algorithm is com-
puted as follows: BS has to search all K subchannels for

U/2 users. Hence, it requires K!
U

1


 �
þ U

2


 �
þ…þ U

L


 �� 


combinations. The time complexity of the MOM algo-

rithm can be expressed as follows: OðK!2U=2Þ. An ES
method considers all possible solutions for subchannel
allocation. Hence, the time complexity of an ES algo-
rithm is expressed as O K!2Uð Þ.Thus, the complexity of
the proposed EE-CSL algorithm for the subchannel
assignment of the MIMO-NOMA system is lower than
that of other matching algorithms.

4 | SIMULATION RESULTS

In this section, we present the simulation results to dem-
onstrate the performance of the proposed EE-CSL algo-
rithm by optimizing EE in the MIMO-NOMA system. To
prove the effectiveness of the proposed EE-CSL algo-
rithm, the performance of ES, a one-to-one matching
(OOM) algorithm, and a single-layer network are demon-
strated as benchmarks for comparison. An ES algorithm
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attempted to find an optimal solution by considering all
possible subchannel allocation methodologies. To illus-
trate the significant benefits achieved by the NOMA
scheme, the performance of conventional orthogonal
multiple access (OMA) for a MIMO-NOMA-based down-
link system was also provided. The ES and OOM algo-
rithms were also applied to OMA. It is also inferred that
the MIMO-NOMA scheme always outperforms the
MIMO-OMA scheme. The specific values of the simula-
tion parameters and parameters used in the co-training-
based learning scheme are summarized in Tables 1 and
2, respectively.

Figure 3 illustrates the CDF of the sum rate in the
MIMO-NOMA system for three different schemes. The
result is evaluated for 7000 random test points. As shown
in the figure, the range of the sum rate of the MIMO-
NOMA system under different algorithms is mostly dis-
tributed between 2�109 and 5�109. Evidently, the pro-
posed EE-CSL-based subchannel allocation yields better
performance than a single-layer DNN. Note that the pro-
posed EE-CSL scheme has close performance to the
MOM algorithm and can address the subchannel alloca-
tion problem well.

Figure 4 depicts the convergence of EE in MIMO-
NOMA systems. EE is evaluated for different numbers of
training data sequences. As shown in the figure, the pro-
posed EE-CSL subchannel allocation scheme converges
to 5:33�1012 bits/joule during training.

Figure 5 shows the total sum rate of the MIMO-
NOMA system versus the number of clusters. As shown
in the figure, the sum rate increases with the number of
MIMO-NOMA clusters. Evidently, the proposed EE-CSL
algorithm outperforms a single-layer neural network.
The ES algorithm shows better performance in terms of
the total sum rate than other matching algorithms, but
involves time complexity. The sum rate performance of
the MOM matching algorithm and for a perfectly trained

TAB L E 1 System parameters.

Parameters Values

Number of transmit antennas 3

Number of receive antennas 3

Channel bandwidth 10 MHz

Path loss exponent 2.4

Fading Rayleigh

Noise power spectral density �174 dBm/Hz

TAB L E 2 List of parameters used in the co-training-based

learning scheme.

Parameters
Neural network
X1

Neural network
X2

Number of hidden
layers

3 4

Batch size 200 500

Learning rate 0.01 0.05

Number of neurons 600 80

Dropout coefficients 0.8 1

Number of training
sets

7000

Number of testing
sets

1000

F I GURE 3 CDF that represents the sum rate of MIMO-

NOMA systems realized by different algorithms.

F I GURE 4 Energy efficiency of the semi-supervised learning-

based subchannel allocation algorithm (EE-CSL) versus the

number of training examples.
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case were provided for comparison. In the MOM match-
ing algorithm, matching was performed based on the
maximum value of the utility factor, and hence, the algo-
rithm shows better performance. Figure 5 also illustrates
the sum rate performance of the MIMO-NOMA scheme.
ES and OOM-based OMA were also performed for com-
parison. As shown in the figure, MIMO-NOMA achieves
a larger sum rate than conventional MIMO-OMA due to
its high spectral efficiency.

As the formulated optimization problem was
designed to maximize the EE of the system, the average
EE was computed for different algorithms. Figure 6
depicts a more intuitive comparison of the average EE for
different subchannel assignment schemes. The ES
method of subchannel allocation shows better EE perfor-
mance, but involves a higher time complexity. The MOM
algorithm also provides better performance because the
preference list is created in a decreasing order of the sum
rate of the MIMO cluster. The semi-supervised learning
method of subchannel allocation has significant EE
improvement over a single-layer NN. Comparing the per-
formance of the proposed algorithm with conventional
OMA, NOMA offers significant EE improvement.

Figure 7 depicts the performance of different sub-
channel allocation algorithms of MIMO-NOMA systems
in terms of computational complexity. This simulation
was performed for 100 users, with two users in a cluster,
which requires a total of 50 subchannels. As shown in
the figure, the proposed EE-CSL algorithm has a lower
computational complexity than other matching algo-
rithms. Although a single-layer NN has the lowest com-
putational complexity among all algorithms, it exhibits
poor performance than the proposed EE-CSL algorithm
in terms of sum rate and average EE.

5 | CONCLUSION

RA plays a central role in determining the performance
of MIMO-NOMA systems. This study mainly considered
the problem of subchannel allocation for MIMO-NOMA
systems. An energy-efficient ML power optimization
problem was formulated under QoS Constraint and was
solved using an EE-CSL algorithm. A co-training-based
semi-supervised learning algorithm helps improve the
learning performance of the system. This scheme also
attempts to reduce the dependency of labeled data, and
initial data were generated by using the MOM algorithm.
Initial assignment using the MOM algorithm improves
the EE of the MIMO-NOMA system. Simulation results
indicate that the sum rate performance of a co-training-
based semi-supervised learning subchannel assignment is
closer to the MOM algorithm. Different matching algo-
rithms were considered benchmarks for comparison. The
results proved that the proposed EE-CSL algorithm has a
lower computational complexity than other matching
algorithms. It is also envisioned that the proposed EE-
CSL subchannel assignment framework of the MIMO-
NOMA system outperforms conventional OMA in terms
of sum rate and average EE. The effectiveness of the pro-
posed learning scheme is evident from the performance
improvement of MIMO-NOMA systems. Extending the

F I GURE 5 Total sum rate versus the number of clusters for

different subchannel allocation algorithms.

F I GURE 6 Average energy efficiency performance

comparison of different subchannel allocation algorithms.

F I GURE 7 Computational complexity comparison of different

subchannel allocation algorithms.
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aforementioned subchannel assignment for UAV com-
munications can be the subject of future research.
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