DOI QR코드

DOI QR Code

Technical Trends in Vertical GaN Power Devices for Electric Vehicle Application

전기차 응용을 위한 수직형 GaN 전력반도체 기술 동향

  • H.S. Lee ;
  • S.B. Bae
  • 이형석 (GaN박막소재/소자창의연구실) ;
  • 배성범 (GaN박막소재/소자창의연구실)
  • Published : 2023.02.01

Abstract

The increasing demand for ultra-high efficiency of compact power conversion systems for electric vehicle applications has brought GaN power semiconductors to the fore due to their low conduction losses and fast switching speed. In particular, the development of materials and core device processes contributed to remarkable results regarding the publication of vertical GaN power devices with high breakdown voltage. This paper reviews recent advances on GaN material technology and vertical GaN power device technology. The GaN material technology covers the latest technological trends and GaN epitaxial growth technology, while the vertical GaN power device technology examines diodes, Trench FETs, JFETs, and FinFETs and reviews the vertical GaN PiN diode technology developed by ETRI.

Keywords

Acknowledgement

본 논문은 산업통상자원부의 재원으로 산업기술평가관리원(KEIT)[과제번호: RS-2022-00143570, 2kV급 수직형 GaN 전력소자용 에피 및 소자 핵심원천 기술개발] 지원을 받아 수행된 연구임.

References

  1. 외교부, "2030 국가 온실가스 감축목표(NDC)," 2021.
  2. https://www.energy.gov/
  3. 국제에너지기구(IEA), "2021년 세계 전기차 시장 전망 보고서," 2021, https://www.iea.org/reports/global-evoutlook-2021
  4. Yole Development, "Power electronics for electric & hybrid electric vehicles 2020," 2020.
  5. T. Bieniek, "REACTION project as a driver for key european SiC technologies focused on power electronics development," Tech-connect Briefs 2019, 2019, pp. 256-259.
  6. W. Utsumi et al., "Congruent melting of gallium nitride at 6 GPa and its application to single crystal growth," Nature Mater., vol. 2, 2003, pp. 735-738. https://doi.org/10.1038/nmat1003
  7. I.C. Kizilyalli et al., "Reliability studies of vertical GaN devices based on bulk GaN substrates," Microelectronics Reliability, vol. 55, no. 9-10, 2015, pp. 1654-1661. https://doi.org/10.1016/j.microrel.2015.07.012
  8. R. Dwilinski, "GaN synthesis by ammonothermal method," Acta Physica Polonica A, vol. 88, 1995, pp. 833-836. https://doi.org/10.12693/APhysPolA.88.833
  9. D. Ehrentraut et al., "High quality, low cost ammonothermal bulk GaN substrate," Jpn. J. Appl. Phys., vol. 52, no. 8S, 2013.
  10. HTTP://www.ammono.com/images/Articles/Ammono_progress.pdf
  11. 한국화학연구원, "조명기기 LED용 GaN 단결정 기술개발," 최종 연구보고서(산업통상부), 2014. 3.
  12. HTTP://commons.wikimedia.org/wiki/File:SchemaHVPE-Reaktor_de.png
  13. 이혜용, "질화갈륨 단결정 성장 기술 개발현황," 세라미스트, vol. 14, no. 5, 2011, pp. 35-42.
  14. H. Amano et al., "The 2018 GaN power electronics roadmap," J. Phys. D: Appl. Phys., vol. 51, 2018, article no. 163001.
  15. I. C. Kizilyalli et al., "3.7 kV vertical GaN PN diodes," IEEE Electron Device Lett., vol. 35, no. 2, 2014, pp. 247-249. https://doi.org/10.1109/LED.2013.2294175
  16. T. Hayashida et al., "Vertical GaN merged PiN Schottky diode with a breakdown voltage of 2kV," Appl. Phys. Express, vol. 10, 2017, article no. 061003.
  17. X. A. Cao et al., "Growth and characterization of GaN PiN rectifiers on free standing GaN," Appl. Phys. Lett., vol. 87, 2005, article no. 053503.
  18. Y. Yoshizumi et al., "High breakdown voltage pn junction diodes on GaN substrates," J. Cryst. Growth, vol. 298, 2007, pp. 875-878. https://doi.org/10.1016/j.jcrysgro.2006.10.246
  19. Y. Hatakeyama et al., "Over 3.0 GW/cm2 figure of merit GaN pn junction diodes on free standing GaN substrates," IEEE Electron Device Lett., vol. 32, 2011, pp. 1674-1676. https://doi.org/10.1109/LED.2011.2167125
  20. S. Chowdhury et al., "CAVET on bulk GaN substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion," IEEE Electron Device Lett., vol. 33, 2012, pp. 41-43. https://doi.org/10.1109/LED.2011.2173456
  21. H. Nie et al., "Remarkable reduction of on-resistance by ion implantation in GaN/AlGaN/GaN HEMTs with low gate leakage current," IEEE Electron Device Lett., vol. 35, 2014, pp. 939-941. https://doi.org/10.1109/LED.2014.2339197
  22. Q. Diduck et al., "1000 V vertical JFET using bulk GaN," ECS Trans., vol. 58, 2013, pp. 295-298. https://doi.org/10.1149/05804.0295ecst
  23. https ://nexgenpowersystems .com/wp-content/uploads/2016/06/GaN-is-Great-v4.pdf
  24. T. Oka et al., "Vertical GaN based trench metal oxide semiconductor field-effect transistors on a freestanding GaN substrate with blocking voltage of 1.6 kV," Appl. Phys. Express, vol. 7, 2014, pp. 021002-1-021002-4. https://doi.org/10.7567/APEX.7.021002
  25. T. Oka et al., "1.8 mΩ·cm2 vertical GaN based trench metal-oxide-semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation," Appl. Phys Express, vol. 8, 2015, pp. 054101-1-054101-4. https://doi.org/10.7567/APEX.8.054101
  26. M. Sun et al., "High-performance GaN vertical fin power transistors on bulk GaN substrates," IEEE Electron Device Lett., vol. 38, 2017, pp. 509-512. https://doi.org/10.1109/LED.2017.2670925
  27. Y. Zhang et al., "Large-area 1.2-kV GaN vertical power FinFETs with a record switching figure of merit," IEEE Electron Device Lett., vol. 40, pp. 75-78.