DOI QR코드

DOI QR Code

Low-clock-speed time-interleaved architecture for a polar delta-sigma modulator transmitter

  • Nasser Erfani Majd (Department of Electrical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz) ;
  • Rezvan Fani (Department of Electrical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz)
  • 투고 : 2021.11.19
  • 심사 : 2022.05.23
  • 발행 : 2023.02.20

초록

The polar delta-sigma modulator (DSM) transmitter architecture exhibits good coding efficiency and can be used for software-defined radio applications. However, the necessity of high clock speed is one of the major drawbacks of using this transmitter architecture. This study proposes a low-complexity timeinterleaved architecture for the polar DSM transmitter baseband part to reduce the clock speed requirement of the polar DSM transmitter using an upsampling technique. Simulations show that using the proposed four-branch timeinterleaved polar DSM transmitter baseband part, the clock speed requirement of the transmitter is reduced by four times without degrading the signal-tonoise-and-distortion ratio.

키워드

참고문헌

  1. H. Sarkan, M. Shokair, E. S. El-Rabaie, and O. Nasr, Study the effect of PAPR on wideband cognitive OFDM rafio networks, Telecommun. Syst. 53 (2013), no. 4, 469-478.  https://doi.org/10.1007/s11235-013-9708-z
  2. S. C. Cripps, RF power amplifiers for wireless communications, Artech House, Norwood, 2006. 
  3. A. Grebennikov, RF and microwave transmitters design, Wiley, New York, 2011. 
  4. B. T. Thiel, A. Ozmert, J. Guan, and R. Negra, Lowpass delta sigma modulator with digital upconversion for switching mode power amplifiers, (IEEE MTT-S International Microwaves Symposium, Baltimore, MD, USA), June 2011, pp. 5-10. 
  5. V. Bassoo and M. Faulkner, Sigma delta digital drive signals for switch mode power amplifiers, Electron. Lett. (IET). 44 (2008), no. 22, 1299-1300.  https://doi.org/10.1049/el:20089597
  6. N. Kumar, and K. Rawat, Delta sigma modulation based all digital transmitter for upcoming SDR applications, (IEEE MTT-S International Microwave and RF Conference, Mumbai, India), 2019. https://doi.org/10.1109/IMaRC45935.2019.9118720 
  7. A. Ben Arfi, M. Helaoui, and F. M. Ghannouchi, All digital sigma delta RF modulator for software defined radio applications, (IEEE 28th Canadian Conference on Electrical and Computer Engineering, Halifax, Canada), 2015, pp. 1379-1382. 
  8. S. Hatami, M. Helaoui, F. M. Ghannouchi, and M. Pedram, Single bit pseudoparallel processing low oversampling delta sigma modulator suitable for SDR wireless tranmitters, IEEE Transact Very Larg Scale Integration (VLSI), Systems. 22 (2014), no. 4, 922-931.  https://doi.org/10.1109/TVLSI.2013.2256808
  9. M. Helaoui, S. Hatami, R. Negra, and F. M. Ghannouchi, A novel architecture of delta sigma modulator enabling all digital multiband multistandard RF transmitters design, IEEE Trans. Circuits Syst. II. 55 (2008), no. 11, 1129-1133.  https://doi.org/10.1109/TCSII.2008.2003345
  10. M. M. Ebrahimi, M. Helaoui, and F. M. Ghannouchi, Time interleaved delta sigma modulator for wideband digital GHz transmittes design and SDR applications, J. Progr. Electromagn. Res. B. 34 (2011), 263-281.  https://doi.org/10.2528/PIERB11071205
  11. S. Moallemi and A. Jannesari, The design of reconfigurable delta sigma modulator for software defined radio applications, (Proceedings of the IEEE International Conference on Circuits Systems, Kuala Lumpur, Malaysia), 2012, pp. 254-257. 
  12. M. M. Ebrahimi and M. Helaoui, Reducing quantization noise to boost efficiency and signal bandwidth in delta sigma based tranmitters, IEEE Trans. Microw. Theory Techn. 61 (2013), no. 12, 4245-4250.  https://doi.org/10.1109/TMTT.2013.2288702
  13. F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, Accurate power efficiency estimation of GHz wireless delta sigma transmitters for different classes of switching mode power amplifiers, IEEE Trans. Microw. Theory Techn. 58 (2010), no. 11, 2812-2819.  https://doi.org/10.1109/TMTT.2010.2077552
  14. J. Choi, J. Yim, J. Yang, J. Kim, J. Cha, D. Kang, D. Kim, and B. Kim, A ΔΣ digitized polar RF transmitter, IEEE Trans. Microw. Theory Techn. 55 (2007), 2679-2690.  https://doi.org/10.1109/TMTT.2007.907137
  15. A. Dupuy and Y. Wang, Envelope delta sigma modulated (EDSM) microwave power amplifier, Microw. Pt. Technol. 43 (2004), 491-495.  https://doi.org/10.1002/mop.20512
  16. A. Shameli, A. Safarian, A. Rofougaran, M. Rofougaran, and F. de Flaviis, A two point modulation technique for CMOS power amplifier in polar transmitter architecture, IEEE Trans. Microw. Theory Techn. 56 (2008), 31-38.  https://doi.org/10.1109/TMTT.2007.912012
  17. J. Moon, J. Son, J. Lee, and B. Kim, A multimode/multiband envelope tracking transmitter with broadband saturated amplifier, IEEE Trans. Microw Theory Techn. 59 (2011), 3463-3473.  https://doi.org/10.1109/TMTT.2011.2170580
  18. U. Gustavsson, T. Eriksson, H. Mashad Nemati, P Saad, P. Singerl, and C. Fager, An RF carrier bursting system using partial quantization noise cancellation, IEEE Trans. Circuits Syst. I. 59 (2012), no. 3, 515-528.  https://doi.org/10.1109/TCSI.2011.2167271
  19. M. Nielsen and T. Larsen, A transmitter architecture based on ΔΣ modulation and switch mode power amplification, IEEE Trans. Circuits Syst. II. 54 (2007), no. 8, 735-739.  https://doi.org/10.1109/TCSII.2007.899457
  20. F. Elsayed and M. Helaui, Linearized multi level ΔΣ modulated wireless transmitter for SDR application using simple DLGA algorithm, IEEE J. Emerg. Sel. Top. Circuits Syst. 3 (2013), no. 4, 594-601.  https://doi.org/10.1109/JETCAS.2013.2284612
  21. T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, Design of H-bridge class-D power amplifiers for digital pulse modulation tranmitters, IEEE Trans. Microw. Theory Techn. 55 (2007), no. 12, 2845-2855.  https://doi.org/10.1109/TMTT.2007.909881
  22. M. M. Ebrahimi, M. Helaoui, and F. M. Ghannouchi, Delta sigma based transmitters: Advantages and disadvantage, IEEE Microw. Mag. 14 (2013), no. 1, 68-78. 
  23. N. Erfanimajd, H. Ghafoorifard, and A. Mohammadi, Coding efficiency and bandwidth enhancement in polar delta sigma modulator transmitte, Analog Integr. Circuits Signal Process. 82 (2015), 411-421.  https://doi.org/10.1007/s10470-015-0487-1
  24. T. Johnson and S. P. Stapleton, RF class d amplification with bandpass sigma delta modulator drive signals, IEEE Trans. Circuits Syst. I. 53 (2006), no. 12, 2507-2520.  https://doi.org/10.1109/TCSI.2006.885980
  25. R. Khoini-poorfard, E. B. Lim, and D. A. Johns, Time interleaved over sampling A/D converters: Theory and practice, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 44 (1997), no. 8, 634-645.  https://doi.org/10.1109/82.618037
  26. M. Kozak, M. Karaman, and I. Kale, Efficient architecture for time interleaved oversampling delta sigma converters, IEEE Trans. Circuits Syst. II. 47 (2000), no. 8, 802-810.  https://doi.org/10.1109/82.861422
  27. N. Erfani Majd, H. Ghafoorifard, and A. Mohammadi, Bandwidth enhancement in delta sigma modulator transmitter using low complexity time interleaved parallel delta sigma modulator, Int. J. Electron. Commun (AEU). 69 (2015), no. 7, 1032-1038.  https://doi.org/10.1016/j.aeue.2015.04.001
  28. A. Grebennikov, A high efficiency 100-W four-stage Doherty GaN HEMT power amplifier module for WCDMA systems, (IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA), 2011, pp. 1-4.