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Abstract

This paper proposes a method that can reduce the complexity of a system

matrix by analyzing the characteristics of a pseudoinverse matrix to receive a

binomial frequency division multiplexing (BFDM) signal and decode it using

the least squares (LS) method. The system matrix of BFDM can be expressed

as a band matrix, and as this matrix contains many zeros, its amount of calcu-

lation when generating a transmission signal is quite small. The LS solution

can be obtained by multiplying the received signal by the pseudoinverse

matrix of the system matrix. The singular value decomposition of the system

matrix indicates that the pseudoinverse matrix is a band matrix. The signal-to-

interference ratio is obtained from their eigenvalues. Meanwhile, entries that

do not contribute to signal generation are erased to enhance calculation effi-

ciency. We decode the received signal using the pseudoinverse matrix and the

removed pseudoinverse matrix to obtain the bit error rate performance and to

analyze the difference.
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1 | INTRODUCTION

Orthogonal frequency division multiplexing (OFDM)
has been used for decades in various fields, such as
mobile communication [1], wireless local area network
(WLAN) [2], satellite communication [3], broadcasting
[4], and Internet of Things [5]. The reason is that
OFDM is easy to implement through fast Fourier
transform (FFT) and inverse fast Fourier transform
(IFFT) and can effectively estimate and recover multi-
path fading channels. However, because OFDM has a
square-shaped envelop [6], the power spectrum is
spread, and the out-of-band emission (OoBE) power is
leaked to the adjacent channel [7].

To suppress the spectral side lobe, the windowing for
smoothing the transition of the OFDM envelope has been
examined [8], but it does not sufficiently suppress the
OoBE. Thus, technologies that can maintain the orthogo-
nality between subcarriers to increase the bit error rate
(BER) performance while suppressing the OoBE and
inserting pilots have been developed [9–11]. These
methods are relatively well handled mathematically but
have high implementation complexity. A solution was
proposed by considering OoBE suppression as a problem
of minimizing the Frobenius norm of the matrix [12].
Although the weight vector is updated by reducing the
OoBE through differentiation [13] to remove the disconti-
nuity between successive OFDM symbols, continuous
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errors may occur as it has a recursive structure. To reduce
the OoBE and the peak-to-average power ratio of OFDM-
based systems simultaneously, a method called alignment
suppression was proposed [14]. This method requires a
safe uplink channel because the transmitter uses channel
state information and has a disadvantage because the
implementation complexity for extracting the channel
state information from the received signal is large.
Methods [15–19] that can reduce the OoBE using the fil-
ter bank method have been proposed. However, these
methods have various inherent problems, such as self-
interference and difficulty in inserting pilot symbols.
Consequently, filtered OFDM schemes that limit the
OoBE by directly filtering OFDM symbols have been pro-
posed [20, 21]. However, as the length of the filter is, at
most, half of the length of the OFDM symbol, synchroni-
zation and BER performances may be negatively affected.
Further, a method of reducing the OoBE using cancella-
tion carriers has been proposed, and the receiver can
demodulate the OoBE in the same manner as the con-
ventional OFDM demodulation method [22]. Although
this scheme maintains the transmission efficiency of
existing OFDM, the spectrum characteristics are greatly
improved when compared with the conventional
scheme [23, 24] without self-interference. However, it
must prove stability against insertion of cancellation car-
riers that are not used in existing standard technologies.

A technology that can completely prevent out-of-band
power emission, which is the core technology of future
wireless communication technology, has been proposed
recently [25, 26]. These technologies developed spectrum
encapsulation (SE)-OFDM based on three major technol-
ogies, namely, windowing, zero insertion, and orthogo-
nalization, and implementation complexity was
drastically reduced through vectorization [27]. Despite
the maturity of the technology for blocking the OoBE of
OFDM, whether it will continue to be used as a technol-
ogy in the future remains questionable. This is mainly
because communication channels in the future will
become more complex than those in the present. For
example, many buildings are built in narrow areas due to
urbanization, and the multipath fading phenomenon
increases because of an increase in transmission speed.
In the currently used OFDM scheme, a cyclic prefix
(CP) is used to overcome multipath fading. Despite the
increase in future transmission speed, the CP length to
overcome the multipath fading channel cannot be
reduced because the transmission speed of radio waves
remains unchanged. Therefore, for transmission effi-
ciency, the ratio of the CP and data symbols is highly
likely the same as that of the current method.

The binomial frequency division multiplexing
(BFDM) scheme, which is a method of transmitting only

the power required for data symbols, has been proposed
for efficient information transmission [28]. It is designed
to reduce the spread of the spectrum by allowing the col-
umns of the system matrix to be composed of the coeffi-
cients of the binomial polynomial. When data symbols
are transmitted in the time domain, BFDM symbols
always start and end with zero. Additionally, the BFDM
scheme has strong characteristics against collision and
multipath fading channels when random access is per-
formed. However, each column of the BFDM system
matrix partially overlaps the neighboring column. In this
case, interferences may occur between data symbols
when data symbols are transmitted through a system
matrix. The BER performance is expected to improve
using complex algorithms. However, in-depth investiga-
tion is required to determine whether the performance
sufficiently improves.

The properties of the BFDM system can be verified
by finding the eigenvalues of the system matrix. That is,
the eigenvalues of the matrix of the BFDM system are
close to 1, resulting in an orthogonal matrix. Therefore,
a little difference emerges in the ideal performance
when using the least squares (LS) method than when
using any other methods, and high-speed implementa-
tion is possible. However, a pseudoinverse matrix is
required when performing the LS algorithm. According
to the trend of technological development, the size of
the transmission symbol tends to gradually increase [2].
Thus, the size of a system matrix inevitably increases,
and the complexity of a transmitter and a receiver inev-
itably increases. This study aims to reduce the amount
of computation by analyzing the properties of the pseu-
doinverse so that it can be applied to a large-scale
BFDM system that operates at a high-speed in the
future.

The following are the novelties and contributions of
this paper:

① The system matrix is expressed as a linear sum of basis
matrixes through single value decomposition (SVD).

② The existence of orthogonality between base matrixes
is confirmed.

③ If the system matrix is a band matrix, then the basis
matrix is a band matrix.

④ The pseudoinverse matrix can be expressed as the
basis matrix of the system row and is proven as a band
matrix. The erased pseudoinverse matrix is obtained
by determining whether each entry contributes to the
pseudoinverse matrix by setting an appropriate thresh-
old value.

⑤ Using the eigenvalue of the system matrix, we evalu-
ate the SIR performance when receiving the LS
method at the receiver.

278 KIM ET AL.



⑥ Decoding is possible by reducing the amount of calcu-
lation that confirms coincidence by calculating the
BER performance obtained by the pseudoinverse and
erased pseudoinverse matrixes.

As BFDM is a general form of OFDM, it can be applied
to transmission methods based on OFDM (e.g., WLAN,
DVBT, satellite, and LTE). BFDM can be applied for very
complex cities or rugged mountainous terrains, and as it
does not use CP, interference to neighboring channels
can be reduced by communicating with low power. Fur-
ther, because both matrixes A and A+ are band matrixes,
implementation is quite easy.

The remainder of this paper is organized as follows.
Section 2 introduces a communication system model that
uses the BFDM method. Section 3 analyzes the properties
of the BFDM system matrix through the SVD of the sys-
tem matrix. Section 4 analyzes the properties of the pseu-
doinverse matrix and confirms that the matrix is a band
matrix. Section 5 proposes a method to reduce the
amount of decoding operations by deleting entries that
have weak contributions to the operation using the
BFDM system matrix as an example. In Section 6, the
BER performance was evaluated when pseudoinverse
and erased pseudoinverse matrixes were applied. Finally,
Section 7 summarizes the results of the proposed method
and suggests ways to apply it to various communication
applications in the future.

2 | COMMUNICATION MODEL

Figure 1 presents the communication system model that
applies the proposed scheme. A data vector is a vector
comprising quadrature amplitude modulation symbols
for each entry. It is multiplied by precoding matrix A,
and then IFFT is obtained and transformed from the fre-
quency domain to the time domain and transmitted as a
BFDM symbol. The channels are modeled using additive
white Gaussian noise (AWGN) and multipath fading
channels. The received symbol is transformed from the
time to the frequency domain through FFT and then

multiplied by decoding matrix A+ to restore the encoding
function performed by the transmitter to the original
matrix. The reconstructed symbol vector w may be deter-
mined as a symbol vector close to the data vector after
removing the distortion received from the channel to
obtain an estimated data symbol.

If encoding matrix A and decoding matrix A+ are
removed from the model in Figure 1, the proposed sys-
tem reverts to the OFDM system. Therefore, this
model can be considered a general communication
model as an extended form of an OFDM system. The
BFDM transmission symbol at time k can be expressed
as follows:

sk ¼FH
NAdk, ð1Þ

where FH
N is the inverse discrete Fourier transform

matrix. The received signal is expressed as follows:

rk ¼Ckskþnk, ð2Þ

where Ck is the channel matrix and nk is the AWGN
noise vector.

As each column partially overlaps with neighboring
columns in the BFDM system matrix, decoding using the
LS method is preferred. Thus, the signal obtained can be
expressed as

wk ¼AþFNrk
¼CkdkþAþenk,

ð3Þ

where Aþ is the pseudoinverse matrix and ~nk ¼FNnk is
the noise vector in the frequency domain.

In this study, we are not interested in channel Ck, but
we analyze the properties of pseudoinverse matrix Aþ to
reduce the implementation complexity of the receiver.

When the channel is ideal, the relation

AþA¼ I ð4Þ

F I GURE 1 BFDM communication system model
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should be satisfied.

3 | SYSTEM MATRIX

In the frequency domain, the BFDM system matrix can
be expressed as a band matrix, as expressed in Equa-
tions (5) and (6). No upper bandwidth exists, and the
lower bandwidth comprises two diagonal matrixes.
Because many entries are zero, it can be observed that
they have an efficient structure in terms of storage and
calculation.

A¼

0α
Bþ
0β
0γ

0γ

B�

2666664

3777775, ð5Þ

where 0α ¼ 0 1�Mð Þ, 0β ¼ 0 N�2� 2Mþ1ð Þ�1ð Þ�Mð Þ, and
0γ ¼ 0 Mþ1ð Þ� M=2ð Þð Þ. Here, N is the number of subcarriers
used, and M is the length of the data vector to be
transmitted. In general, data are transmitted using the
number of subcarriers with an M <N relationship and
a larger number of transmitted data. The reason is that
data utilize a subcarrier with a low-frequency subcarrier
and tend not to use a high-frequency subcarrier. Here, 0α
and 0β indicate that DC subcarriers are not used and
high-frequency subcarriers are not used, respectively,
and 0γ serves to make space so that matrixes Bþ and B�
can be positioned. System matrix A is a special
matrix filled with a zero matrix between Bþ and B�
comprising block matrix B. The subcarriers of Bþ and B�
comprise positive and negative subcarriers. However,
their matrixes are identical, as expressed in (6). That is,
(5) is a practically constructed form with matrix B. In this
paper, for brevity, only an example of using a second-
order binomial polynomial [29] is given, but this can be
explained with the same logic for third or more orders.
For example, the positive and negative matrixes are
defined as

B� ¼ 1ffiffiffi
6

p

1

2 1

1 2

1 . .
.

1

2

1

2666666666664

3777777777775
, ð6Þ

A 12�8ð Þ ¼ 1ffiffiffi
6

p

0

1

2 1

1 2 1

1 2

1

0

1

2 1

1 2 1

1 2

1

2666666666666666666666664

3777777777777777777777775

: ð7Þ

If matrix B can be modified in a dense mode, as
expressed in (6), then matrix A can be represented in (7).
Therefore, data length (Ld) and carrier length (Lc) are
similar, resulting in CP-OFDM and similar transmission
performance.

If matrix B is configured, as expressed in (6), then
matrix A has a form of A (7). Therefore, the data and car-
rier lengths are similar, resulting in CP-OFDM and stun-
ning performance. The relation between Ld and Lc is

Lc ¼ Ldþ2: ð8Þ

If Ld is sufficiently large, then this becomes Lc ≈ Ld. That
is, band-limited matrix A is able to suppress the interfer-
ence from neighboring channels at the expense of very
few carrier bands. That is, band-limiting matrix A is able
to suppress the interference from neighboring channels
at the expense of very few carrier bands.

The current CP-OFDM compensates for the channel
through CP. Thus far, it has been used in almost all
fields, such as LTE and WLAN. It is determined that mul-
tipath channels are overcome by allocating a CP length
equal to 1/4 of the FFT size.

However, this method has two problems. First, the
OFDM scheme is made in the scheme that is suitable for
the AWGN environment. Therefore, as the multipath
becomes longer, the length of the CP must be increased
by the same amount. In CP-OFDM, if the multipath
length is 1/2 of the total length due to the failure of urban
buildings as cities develop, the CP length should be
increased by 1/2 of the FFT size. Thus, transmission effi-
ciency is reduced, and the power for the CP reaches half
of the power for data transmission. Consequently, 1.5
times the power for the entire data transmission is
required. Second, as CP-OFDM has a square wave enve-
lope, it causes spectrum spread and presents interference
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to neighboring cells. Although not adopted in 5G net-
works, many new waveforms, such as FBMC, F-OFDM,
and GFDM, have been announced. Such methods based
on filtering require more than twice the sampling rate of
conventional methods because at least twice as many
samples are required for filtering. In 6G networks, the
current CP-OFDM method is not suitable because the
transmission rate is very high and severe interference
may be induced.

In the future, newly developed waveforms can be
practically used only when high-speed transmission,
interchannel interference, and low complexity are pos-
sessed. The BFDM scheme has such a characteristic. In
this study, BFDM can be decoded using a simple LS
method in such a context, which shows excellent
performance.

For each column vector, B�ℝ 2Mþ1ð Þ� M=2ð Þð Þ is
obtained from the binomial polynomial. The SVDs of A
and B may be expressed as

A¼UAΣA VA
T , ð9aÞ

B¼UBΣB VB
T, ð9bÞ

where UA, UB, VA, and VB are unitary matrixes. Further,
ΣA and ΣB are nonnegative diagonal matrixes as

ΣA ¼
QA

0

� �
, ð10aÞ

QA ¼ diag σA,1, σA,2, L, σA,Mð Þ, ð10bÞ

ΣB ¼
QB

0

� �
, ð11aÞ

QB ¼ diag σB,1, σB,2, L, σB,M=2
� �

, ð11bÞ

and 0�ℝ N�Mð Þ�Mð Þ.
If A is expressed using eigenvectors, then it can be

expressed as

A¼
XM

s¼1
σiuA,ivTA,i, ð12Þ

where uA,i is the ith column vector of U, vA,i is the ith
column vector of V, and σi is the ith eigenvalue of A.

Theorem 1. If matrix A is a band matrix,
then matrixes

Φi ¼uA,ivTA,i i¼ 1, 2, L, M , ð13Þ
are all band matrixes.

Proof. If any of uA,ivTA,i ji¼ 1, 2, L, M
� �

is
not a band matrix, then A, comprising a lin-
ear combination of positive coefficients
σA,i ji¼ 1, 2, L, Mf g, as expressed in (13)
does not become a band matrix. Therefore,
uA,ivTA,i ji¼ 1, 2, L, M
� �

must all be band
matrixes. □

Theorem 2. Matrixes Φi and Φj are mutually
orthogonal and are the basis matrixes
constituting A.

Proof. Projecting Φj to Φi, from Appendix A,
we obtain

ΦT
j Φi ¼

I

0

	
i¼ j

i≠ j:
ð14Þ

Here, Φiji¼ 1, 2, L, Mf g are the basis
matrixes for forming A because it is mutually
orthogonal between matrixes. □

We can rewrite (12) as

A¼
XM

s¼1
σi Φi: ð15Þ

Corollary 1. If matrix A is a band matrix,
then its transpose matrix

AT ¼
XM
s¼1

σiΦi

!T

¼
XM
s¼1

σiΦT
i

ð16Þ

is the band matrix. That is,
ΦT

i i¼ 1, 2, Λ, Mð Þ is a band matrix.

Proof. According to Theorem 1, transpose
matrix AT of A is in the form wherein the
upper bandwidth is located at the position of
the lower bandwidth and the lower band-
width is located at the position of the upper
bandwidth centering on the diagonal matrix.
Therefore, the transpose matrix is a band

KIM ET AL. 281



matrix because the band of the original matrix
does not change. That is, if the original matrix
is a band matrix, then the transpose matrix is
also a band matrix. □

4 | PSEUDOINVERSE MATRIX OF
THE SYSTEM MATRIX

4.1 | Pseudoinverse matrix

In this section, we analyze the pseudoinverse matrix of
the system matrix for decoding A at the receive side. We
consider the properties of the transpose matrix of system
matrix A.

The left pseudoinverse matrix of A can be expressed
as follows [30]:

Aþ ¼ ATA
� ��1

AT: ð17Þ

Theorem 3. If a matrix is a band matrix,
then the pseudoinverse matrix is also a band
matrix.

Proof. From Appendix B, we obtain

AþT ¼ 1
M

XM

r¼1
σrΦr: ð18Þ

This matrix is a band matrix because it is a
linear combination of matrixes, such as 10.
According to Corollary 1, it is also a band
matrix. □

From Appendix C, pseudoinverse matrix A+ can be
expressed with Bþ as

Aþ ¼ 0 Bþ 0 0

0 0 0 Bþ

� �
, ð19Þ

where

Bþ ¼ BTB
� ��1

BT

¼VBΣþ
BU

T
B

¼
XM=2

i¼1

σB,iviui:

ð20Þ

4.2 | Signal-to-interference ratio (SIR)

The Frobenius norm of A is

Ps ¼ Ak k2F ¼

0

B

0

0

0

0

0

B

26664
37775






















2

F

¼ 2 Bk k2F
¼ 2 UBΣBVT

B



 


F

¼ 2 ΣBk kF
¼ 2�M

2
¼M:

ð21Þ

From Equations (17) and (18), the amount of power
increase due to the pseudoinverse matrix of A is

Pþ
s ¼ Aþk k2F

¼
0 Bþ 0 0

0 0 0 Bþ

" #











2

F

¼ 2 Bþk k2F

¼ 2
XM=2

i¼1

σ�2
B,i :

ð22Þ

Therefore, the SIR reduction due to the self-interference
of the system matrix becomes

γd ¼
Ps

Pþ
s
¼ M

2
PM=2

i¼1 σ
�2
B,i

: ð23Þ

4.3 | Eigenvalues of two diagonal
matrixes

From Appendix D, the relation between two diagonal
matrixes with eigenvalues QA and QB is

QA ¼
QB

QB

� �
: ð24Þ

To obtain the value of γd, we should know the
eigenvalues of matrix B. Obtaining the eigenvalues of
B directly is difficult. Therefore, we want to find them in
an indirect way. We have the product of AT and A as
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Λ¼ATA

¼VT
A

XT

A
UT

AUA

X
A
VA

¼VT
A

XT

A

X
A
VA

¼VT
A

X2

A
VA

ð25Þ

Meanwhile, (25) can be expressed as

Λ¼

0 0

B 0

0 0

0 B

2666664

3777775
T 0 0

B 0

0 0

0 B

2666664

3777775

¼ 0 BT 0 0

0 0 0 BT

" # 0 0

B 0

0 0

0 B

2666664

3777775
¼ BTB 0

0 BTB

" #

ð26Þ

Evidently, the eigenvalues of matrix Λ are expressed as
the square of the eigenvalues of matrix B. Thus, after
finding the eigenvalues, we can also find the eigenvalue
of B by determining their square root.

Specifically, matrix B is can be expressed as

B¼UBΣBVB
T: ð26Þ

By substituting (26) into (25), we obtain

Λ¼
VBΣBUT

BUBΣBVT
B

VBΣBUT
BUBΣBVT

B

" #

¼
VBΣ2

BV
T
B

VBΣ2
BV

T
B

" #

¼
VB

VB

" #
Σ2
B

Σ2
B

" #
VT

B

VT
B

" #

¼
VB

VB

" #
ΣB

ΣB

" # !2
VT

B

VT
B

" #
ð27Þ

From (25) and (27), we obtain

ΣA
2 ¼

ΣB

ΣB

� �� �2

: ð28Þ

Because the elements of ΣA are positive, we can take the
positive solution

ΣA ¼ ΣB

ΣB

� �
: ð29Þ

The following square matrix can be obtained using (6)
directly as

Λ¼ 1
6

6 4

4 6 4

4 . .
.

4

4 6 4

4 6

6 4

4 6 4

4 . .
.

4

4 6 4

4 6

2666666666666666666664

3777777777777777777775

, ð30Þ

which is a typical tridiagonal matrix.
Applying the result of [25] to (30), the elements of ΣA

given by (6) are

ΣB,i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6

6þ2 �4cos πi
Mþ1

� �s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4

3
cos

πi
Mþ1

r
,

ΣB,iþM=2 ¼ΣB,i, i¼ 1, 2, Λ, M=2:

ð31Þ

5 | ERASING THE ENTRIES

According to Theorem 1 and Theorem 2, Φi is a band-
based matrix, so AþT in Equation (13) is a band matrix.
Accordingly, Aþ is also a band matrix. In (13), when the
eigenvalue is σ1 ¼ σ2 ¼ ��� ¼ σM ¼ 1, the system matrix
has an important meaning. The reason is that in the case
of i≠ j, Φi and Φj are orthogonal, so all sums of the base
matrixes can be a criterion for estimating the bandwidth.

From (13), we have
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Ajσ1¼σ2¼L ¼σM¼1 ¼
XM
s¼1

σiΦijσ1¼σ2¼L ¼σM¼1

¼
XM
i¼1

Φi:

ð32Þ

From (16), we obtain

Aþ �AþTjσ1¼σ2¼L ¼σM¼1

¼
XM
i¼1

σ�1
i Φijσ1¼σ2¼L ¼σM¼1

¼
XM
i¼1

Φi:

ð33Þ

With

Ao ¼ 1ffiffiffiffiffi
M

p Aþ, ð34Þ

it can be observed from Appendix E that Ao is an
orthogonal matrix. Meanwhile, Aþ has the same band-
width as A, and Aþ is a band matrix. Figure 4 shows
orthogonal matrixes Ao and Aþ. As shown in the figure,
although a slight difference exists, the arrangement of Ao

is more regular than that of Aþ. The reason is that the
eigenvalues of Aþ are irregular, whereas those of Ao are
constant at 1. Therefore, using Ao may be more
convenient than using Aþ to estimate the bandwidth of
the matrix. Meanwhile, the nearest orthogonal matrix
A ⊥ of A can be obtained directly by the following
equation [27]:

A ⊥ ¼A ATA
� ��1

2: ð35Þ

Latter matrix ATA
� ��1=2

serves to change the eigenvalues
of previous matrix A to 1, and Equation (35) becomes

A ⊥ ¼UA
I

0

� �
VT

A, ð36Þ

where the sizes of I and 0 are M�M and N�Mð Þ�M,
respectively. Evidently, matrix A ⊥ is an orthogonal
matrix. The following relation is established as

Ao ¼AT
⊥ : ð37Þ

In Figure 2, the color change depending on the value of
the Z-axis, which is the height, is inconvenient to view.

Hence, the angle was changed to adjust the cubic
curve to be discernible. In the figure, eight data are trans-
mitted using 17 subcarriers. Further, both matrixes are
band matrixes because they have valid values on the
diagonal.

Theorem 4. The bandwidth of band matrix A
and pseudoinverse matrix Aþ is always con-
stant regardless of the matrix size.

Proof. If matrix A is a band matrix, the band-
width is constant regardless of the size of
the matrix. The orthogonal matrixes of A and
AþT are the same as those from (13) and (16).
Therefore, the bandwidth of Aþ is the same
as that of AT. That is, regardless of the size of
matrix Aþ, the bandwidth is constant. □

F I GURE 2 System matrix-related matrixes. (A) Orthogonal

matrix Ao and (B) pseudoinverse matrix Aþ, where N ¼ 17, M¼ 8
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All entries are erased to zero, except for the number
of entries in the bandwidth. By doing this, we want to
exclude an entry with a value of 0 from the LS operation.
The efficiency obtained by reducing the amount of calcu-
lation from Theorem 1 to Theorem 4 can be calculated
as the ratio of the number of zeros and total number of
entries as follows.

η¼NM�αM
NM

¼ 1� α

2Mþ1
,

ð38Þ

where α is the diagonal bandwidth of the inverse matrix
and the relation of N ¼ 2Mþ1 is utilized. Figure 3 shows
the efficiency according to M. Clearly, the efficiency
approaches 1 as M increases. As the size of the pseudoin-
verse matrix increases, the number of entries with a value
of 0 increases. Hence, efficiency can be improved by
reducing the amount of computation.

The complexity of the system matrix is determined by
matrixes A and A+. This study reveals that these
matrixes are band matrixes. In the range that does not
affect the BER performance as in the question, complex-
ity improvement did not affect the BER performance near
80%. Therefore, when designing a system, we recommend
a method that can find alpha, M, and N by investigating
in the vicinity (e.g., from 75% to 85% eta) that does not
degrade the complexity and original BER performance.
In this study, when eta is 79%, the BER performance is
identical to that of the original A+ decoding method,
indicating that it is an optimal method. However, the
optimal general formula remains under investigation.

6 | BER PERFORMANCE

It is crucial to show that although an erased pseudoin-
verse matrix is obtained through a mathematically

F I GURE 3 Reduction efficiency (η) of pseudoinverse matrix

Aþ with α¼ 6

F I GURE 4 System matrix-related matrixes with M = 28 and

N = 64. (A) System matrix. (B) Selected area. (C) Erased

pseudoinverse matrix
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rigorous process, it is applied to an actual BFDM receiver
to demonstrate that its functionality or performance does
not weaken. Therefore, in this section, we attempt to ana-
lyze the performance with a relatively small system
matrix that is easy to reproduce.

The parameters of the system matrix used for BER
performance analysis are as follows:

α¼ 12,

M¼ 28:

Here, α is the bandwidth of the bandwidth of the sys-
tem matrix, and all entries outside the band are set to
0 and are excluded from the actual operation. According
to Equation (32), when α is 0, the complexity improve-
ment efficiency η becomes 1. When α= 12 and M= 28, η
is 1–12/(2� 28+ 1)= 79. The BER was measured in this
environment.

Figure 4 shows the process of obtaining the erased
matrix from the system matrix. Figure 4A–C show the
system matrix, entry with the size of the orthogonal
matrix larger than 0.0018, and erased pseudoinverse
matrix, respectively. As shown in Figure 4B, there are far
more entries that do not contribute than entries that con-
tribute to decoding.

Figure 5 shows the BER performances when decoding
is performed using the pseudoinverse and erased pseu-
doinverse matrixes. As shown in Figure 5B, as the number
of 1 s is 368, the number of multiplications contributing to
decoding is 368 at a matrix size of 28 � 64. However, the
remaining 0 s do not contribute to decoding and can be
omitted during implementation. Therefore, the

implementation efficiency is 368= 28�64ð Þ¼ 0:7946. The
BER performances of the exact and reduced pseudoin-
verse mode are obtained and compared through the
AWGN channel and the exponentially delayed multipath
fading channel h kð Þ¼C �10�k ∕ 10, k¼ 0,1,…,31 [26],
where C is the power normalization factor.

The performances of the two modes obtained through
the simulation are indistinguishably consistent. There-
fore, it was confirmed that despite that the erased mode
is applied, it can be implemented without performance
deterioration.

This result indicates that if the system matrix is a
band matrix, the pseudoinverse matrix is also a band
matrix, and the complexity of implementation can be
reduced by applying the erased method.

Refer to [28] for a comparison of the BER perfor-
mances of OFDM and BFDM over AWGN and multipath
fading channel.

This paper presents a scheme to reduce the complex-
ity of the LS method. In addition to the efficiency for the
complexity of the proposed method, the BER perfor-
mance should be proven not to degrade the performance
of existing methods. As shown in the BER performance
presented in Figure 5, the performances of the original
method and the proposed method are accurate that they
cannot be distinguished with the naked eye.

7 | CONCLUSION

In this study, we analyzed the characteristics of the self-
interference of the BFDM system and the pseudoinverse
matrix required when applying the LS technique for

F I GURE 5 BER performance. (A) QPSK and 16QAM and (B) 32QAM and 64QAM. Subscript E in the legend denotes the

“erased” mode.
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signal decoding in the receiving system. We confirmed
that the BFDM system matrix and its pseudoinverse
matrix are both band matrixes. In the process, the system
matrix was decomposed by SVD to extract the left and
right singular vectors. We confirmed that the matrixes
comprising the product of such vectors are orthogonal to
each other and are band matrixes. It was also proved that
the bandwidth was independent of the system matrix
size, and the computational efficiency according to the
number of transmission symbols was obtained on this
basis. In general, the LS method is used during demodu-
lation, and if the system matrix is large, implementation
complexity becomes quite high as well; thus, it is not suit-
able as a future transmission technology. BFDM can
meet the high-speed transmission required by future
technology and can overcome a multipath fading envi-
ronment. Through this study, it not only maintains com-
patibility with existing transmission technologies but also
establishes a theoretical foundation for the development
of various new transmission technologies.
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APPENDIX A: ORTHOGONALITY OF BASE
MATRIXES

Projecting Φj onto Φi, the resultant matrix becomes

Φj
� �TΦi ¼ΦT

j Φi

¼ ujvTj
 �T

uivTi

¼ vjuT
j uivTi :

ðA1Þ

(i) In case i¼ j

Matrix U is a unitary matrix; hence, uT
i ui ¼ I M�Mð Þ.

Substituting this into (A1) yields

ΦT
i Φi ¼ viI M�Mð ÞvTi

¼ vivTi
¼ I M�Mð Þ:

ðA2Þ

(ii) In case i≠ j
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As matrix U is a unitary matrix, ui and uj are orthog-
onal to each other. Thus, (A1) becomes

ΦT
j Φi ¼ v0 M�Mð ÞvTi

¼ 0 M�Mð ÞvTi
¼ 0 M�Mð Þ:

ðA3Þ

From i) and ii), the results can be summarized as

ΦT
j Φi ¼

I

0

	
i¼ j

i≠ j:
ðA4Þ

APPENDIX B: TRANSPOSED PSEUDOINVERSE
OF THE SYSTEM MATRIX

When (12) is substituted into (14), the pseudoinverse
matrix can be written as

Aþ ¼
XM
p¼1

σpΦp

!T XM
q¼1

σqΦq

!!�1 XM
r¼1

σrΦr

 !T

¼
XM
p¼1

σpΦT
p

 ! XM
p¼1

σqΦq

! !�1 XM
p¼1

σrΦT
r

 !

¼
XM
p¼1

XM
q¼1

σpσqΦT
pΦq

 !�1 XM
p¼1

σrΦT
r

 !
:

ðB1Þ

By applying (11) to (B1), we obtain

Aþ ¼
XM
p¼1

σ2pI

!�1 XM
r¼1

σrΦT
r

 !

¼
XM
p¼1

σ2p

 !�1

I
XM
r¼1

σrΦT
r

 !

¼M�1
XM
r¼1

σrΦT
r

!

¼ 1
M

XM
r¼1

σrΦT
r :

ðB2Þ

Taking the transpose on both sides of (B2), the trans-
pose of Aþ becomes

AþT ¼ 1
M

XM

r¼1
σrΦr: ðB3Þ

APPENDIX C: PSEUDOINVERSE OF THE
SYSTEM MATRIX

By substituting (5) into (4), with (12), we get

Aþ ¼ 0 BT 0 0

0 0 0 BT

" # 0

B

0

0

0

0

0

B

26666664

37777775

0BBBBBB@

1CCCCCCA

�1

0 BT 0 0

0 0 0 BT

" #

¼ BTB 0

0 BTB

" #�1
0 BT 0 0

0 0 0 BT

" #

¼
BTB
� ��1

0

0 BTB
� ��1

24 35 0 BT 0 0

0 0 0 BT

" #

¼
0 BTB
� ��1

BT 0 0

0 0 0 BTB
� ��1

BT

24 35
¼

0 Bþ 0 0

0 0 0 Bþ

" #
,

ðC1Þ

where

Bþ ¼ BTB
� ��1

BT: ðC2Þ

By substituting (6b) into (C2), we obtain

Bþ ¼VBΣþ
BU

T
B: ðC3Þ

APPENDIX D: EIGENVALUE MATRIX OF THE
SYSTEM MATRIX

With (6a) and (7a), we obtain

ATA¼ UAΣAVT
A

� �T
UAΣAVT

A

� �
¼VAQ2

AV
T
A:

ðD1Þ

With (4), we obtain
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ATA¼

0

B

0

0

0

0

0

B

26666664

37777775

T 0

B

0

0

0

0

0

B

26666664

37777775

¼ 0 BT 0 0

0 0 0 BT

" # 0

B

0

0

0

0

0

B

26666664

37777775
¼ BTB

BTB

" #
:

ðD2Þ

By substituting (6b) into (D2), we obtain

ATA¼ VBΣT
BU

T
BUBΣBVT

B

VBΣT
BU

T
BUBΣBVT

B

" #

¼
VBQ2

BV
T
B

VBQ2
BV

T
B

" #

¼
VBQBV

T
B

VBQBV
T
B

" #2
:

ðD3Þ

With (D1)–(D3), we obtain

VAQ2
AV

T
A¼

VBQBV
T
B

VBQBV
T
B

" #2
: ðD4Þ

By solving (D4), we obtain

VAQAV
T
A¼� VBQBV

T
B

VBQBV
T
B

" #
: ðD5Þ

We select the positive solution for simplicity as

VAQAV
T
A¼

VBQBV
T
B

VBQBV
T
B

" #

¼
VB

VB

" #
QB

QB

" #
VB

VB

" #T
:

ðD6Þ

Let VA be

VA ¼
VB

VB

� �
: ðD7Þ

From (D-6), we obtain

QA ¼
QB

QB

� �
: ðD8Þ

APPENDIX E: ORTHOGONALITY OF A0

Self-projecting A0 becomes

AT
oAo ¼ 1ffiffiffiffiffi

M
p AT

o
1ffiffiffiffiffi
M

p Ao

¼ 1
M

XM
j¼1

Φj

 !TXM
i¼1

Φi

¼ 1
M

XM
i¼1

XM
j¼1

ΦT
j Φi:

ðE1Þ

By applying (A4) to (E1), we obtain

AT
oAo ¼ 1

M

XM
i¼1

ΦT
i Φi

¼ 1
M

XM
i¼1

I

¼ I:

ðE2Þ
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