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Abstract

This paper presents a flexible finite-difference technique for analyzing the non-

uniform guiding structures. Because the voltage and current variations along

the nonuniform structure differ for each segment, this work considers the

adaptable discretization steps. This technique increases the accuracy of the

final response. Moreover, by applying the singular value decomposition and

discarding the nonprincipal singular values, an optimal lower rank approxima-

tion of the discretization matrix is obtained. The computational cost of the

introduced method is significantly reduced using the optimal discretization

matrix. Also, the proposed method can be extended to the nonuniform wave-

guides. The technique is verified by analyzing several practical transmission

lines and waveguides with nonuniform profiles.
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1 | INTRODUCTION

Guiding structures with nonuniform profiles are widely
used in various applications, including electrical oscilla-
tors [1], broadband amplifiers [2], frequency multipliers
[3], pulse-shaping devices [4], very large-scale integration
interconnectors [5], and wideband antennas [6]. There
are two types of nonuniform structures. In the first one,
the conductors are not parallel because the transmission
lines are crossed over rivers and valleys, or they are parts
of structures, such as metallic towers or two-winding
transformers. In the second type, the conductors are par-
allel, but the structure’s profile is not uniform, such as in
exponential impedance-matching networks and stepped
impedance microstrip filters [7–9].

Several analytical solutions have been introduced for
analyzing specific cases, such as structures with exponen-
tial [10], linearly tapered [11], power-law [12], and

Hermit [13] profiles. Except for the nonuniform struc-
tures with a few special profiles, no analytical modeling
with the general profiles has been introduced. Also,
numerous numerical-based techniques are presented for
studying nonuniform guiding structures. However, their
disadvantages include high computational cost, slow con-
vergence, high required time, hard to implement, and
hard to generalize.

This work introduces a new technique based on the
flexible finite-difference method for analyzing the nonu-
niform guiding structures. Therefore, adaptable discreti-
zation steps are used for each segment to increase the
final response’s accuracy. This method can determine the
magnitude and phase of the voltage and current and the
scattering parameters of a nonuniform structure. Fur-
thermore, the singular value decomposition is used to
reduce the computational cost. The introduced method is
straightforward to implement, accurate, and faster than
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the traditional approaches based on the discretization
technique. The method can be easily extended to the
nonuniform waveguide in its dominant mode.

2 | THEORY AND FORMULATION

Figure 1 shows a nonuniform structure with a general
profile. This structure conveys transverse electromagnetic
(TEM) or quasi-TEM waves. Therefore, the following
differential equations describe the structure’s voltage V(x)
and current I(x), where Z(x) and Y(x) are the per unit
length impedance and admittance, respectively [14].

dV=dx¼�Z xð ÞI xð Þ, ð1Þ

dI=dx¼�Y xð ÞV xð Þ: ð2Þ

The per unit length parameters vary along the line.
The above differential equations’ analytical solutions can-
not be easily found. A solution to a problem with an
excellent approximation can be obtained using the discre-
tization theory if the step size is sufficiently small. In
other words, the problem’s differential equations can be
converted into a finite-dimensional matrix expression
using the discretization theory. Therefore, the voltage
and current derivatives at any point xn are estimated
using the forward-difference formula [15].

dV
dx x¼xn

≈
V xnþhð Þ�V xnð Þ

hvn
, ð3Þ

dI
dxx¼xn

≈
I xnþhð Þ� I xnð Þ

hin
, ð4Þ

where hn
v and hn

i are the voltage and current step sizes,
respectively. The voltage and current step sizes hn

v and
hn

i are constant in the conventional finite-difference
method. Because a nonuniform structure’s voltage and
current variations might be sharp in some intervals and

smooth in others, the steps hn
v and hn

i with constant
values are not good candidates. Therefore, this work con-
siders adjustable steps. In other words, the values of hn

v

and hn
i, where the voltage or current interval variations

are sharp, differ from the others. Hence, their value
should be determined smartly. Note that the values of hn

v

and hn
i are still unknown. Later, more details about the

step size selection will be presented.
It is assumed that the interval 0 ≤ x ≤ l is divided into

N + 1 segments as x1 = 0 ≤ xn ≤ xN+1 = l. Substituting
(3) and (4) into (1) and (2) provides the following equa-
tions, where n = 1, 1, …, N, Vn = V (xn), In = I (xn),
Zn = Z (xn), and Yn = Y (xn).

Vn�Vnþ1�hvnZnIn ¼ 0, ð5Þ

In� Inþ1�hinYnVn ¼ 0: ð6Þ

Also, the boundary conditions at the two terminals are

V 1 ¼VS�ZSI1 and ð7Þ

VNþ1 ¼ZLINþ1: ð8Þ

Equations (5), (6) and (7), (8) can be expressed in a
matrix form as

AX¼B ! X¼A�1B, ð9Þ
where

X¼ V I½ �T, ð10aÞ
V¼ V 1 � � � VNþ1½ �, ð10bÞ

I¼ I1 � � � INþ1½ �, ð10cÞ

B¼ VS 0 ��� 0½ �T1� 2Nþ2ð Þ, ð11Þ

A¼ A11 A12

A21 A22

� �
2Nþ2ð Þ� 2Nþ2ð Þ

: ð12Þ

The discretization matrix A is constructed from four
blocks as follows.

A11 ¼

1 0 0 0 � � � 0

1 �1 0 0 � � � 0

0 1 �1 0 � � � 0

..

. ..
. ..

. ..
. � � � ..

.

0 � � � 0 1 �1 0

0 � � � 0 0 1 �1

2
6666666664

3
7777777775
, ð13aÞ

F I GURE 1 The general scheme of a nonuniform structure
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A12 ¼

ZS 0 � � � 0

�hv1Z1 0 � � � 0

0 �hv2Z2
. .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 �hvNZN

2
66666666664

3
77777777775
; ð13bÞ

A21 ¼

�hi1Y 1 0 � � � 0

0 . .
. . .

. ..
.

..

. . .
. �hiNYN 0

0 � � � 0 0

0 � � � 0 1

2
666666664

3
777777775
, ð13cÞ

A22 ¼

1 �1 0 0 � � � 0

0 1 �1 0 � � � 0

0 0 1 �1 � � � 0

..

. ..
. ..

. ..
. � � � ..

.

0 � � � 0 0 1 �1

0 � � � 0 0 0 �ZL

2
666666666664

3
777777777775

: ð13dÞ

The first row of A11 and A12 and the last row of A21 and
A22 include the boundary conditions.

Truncation or discretization errors are crucial in this
method and should be reduced. Reducing the values of
hn

v and hn
i will increase accuracy. Moreover, reducing

the values could increase the round-off error [16]. The
values of hn

v and hn
i have three suggestions: the large

step hn
v, hn

i ≤ λ/10, the middle step hn
v, hn

i ≤ λ/20, and
the small step hn

v, hn
i ≤ λ/40, where λ is the wavelength

corresponding to the highest frequency [16]. Although
hn

v, hn
i ≤ λ/40 produces the least truncation error com-

pared to the others, it increases the round-off error and
computational cost. Therefore, the matrix approximation
lemma or Eckart–Young–Mirsky theorem is used. The
singular value decomposition of matrix A is first calcu-
lated as [17]

A¼USVT, ð14Þ

where

UTU¼ 1, ð15Þ

VTV¼ 1, ð16Þ

where 1 and S show the identity and diagonal matrixes
containing the singular values of A in decreasing order
on its diagonal. Also, the columns of U are the left singu-
lar vectors, and the rows of V are the right singular vec-
tors. Moreover, the singular values in S are square roots
of the eigenvalues of AAT. Our studies show that some
singular values are nearly zero for practical applications.
Therefore, the nonprincipal singular values can be dis-
carded. From this, a low-rank approximation of the coef-
ficient matrix A is determined as [17]

AQ ¼USQVT, ð17Þ

where AQ and SQ are the low-rank and diagonal matrixes
containing the principal singular values of A, respec-
tively. It is assumed that the single values of matrixes
A and AQ are M and Q, respectively, where Q < M. By
the low-rank coefficient matrix AQ, the problem’s round-
off error and computational cost will decrease signifi-
cantly. Therefore, without worrying about the round-off
error and computational cost, the values of hn

v and hn
i

can be reduced to increase the final solution’s accuracy.
The proper selection of hn

v and hn
i is essential. There-

fore, we consider the updated version of (3) and (4) as

dV
dx

≈
V xnþhð Þ�V xnð Þ

hvn
þEv hvn,xn

� �
and ð18Þ

dI
dx

≈
I xnþhð Þ� I xnð Þ

hin
þEi h

i
n,xn

� �
, ð19Þ

where Ev (hn
v, xn) and Ei (hn

v, xn) are the voltage and cur-
rent truncation errors, respectively. An iterative tech-
nique is regarded to obtain the minimum error.
Therefore, it is assumed that hn

v and hn
i are constant.

Then, the voltage and current are computed. The closed-
form expression of the computed voltage and current are
calculated using the Fourier series as

V xð Þ¼
X
n
vn exp jnγxð Þ and ð20Þ

I xð Þ¼
X
n
in exp jnγxð Þ, ð21Þ

where vn and in are the voltage and current Fourier coef-
ficients, respectively. Also, γ is the propagation constant
of the TEM mode propagating on the line. Note that the
Fourier coefficients vn and in are easily calculated, as
described in [18]. Substituting the general terms of (20)
and (21) into (18) and (19) gives
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Ev ¼
X
n
vn γn� eγnh

v
n �1

� �
=hvn

n o
eγnxn and ð22Þ

Ei ¼
X
n
in γn� eγnh

i
n �1

� �
=hin

n o
eγnxn : ð23Þ

If the calculated error for each point (xn) is unacceptable,
the values of hn

v and hn
i should be updated as

hvn,h
i
n ¼ λ=20ð Þ 1� t=2Tð Þ, ð24Þ

where Ei
d and Ev

d are the current and voltage desired
error defined by the designer. Also, t = 1, 2, …, T, where
T is the total number of iterations and λ is the wavelength
corresponding to the highest frequency. In the above
equations, it is assumed that the step size variation inter-
vals are λ/40 ≤ hn

v ≤ λ/20, λ/40 ≤ hn
i ≤ λ/20. Our studies

show that for the practical structures, only two or three
iterations are sufficient to obtain an answer with excel-
lent accuracy. Figure 2 shows the flowchart of the pro-
posed procedure.

The scattering parameters are required instead of
the voltage and current for microwave applications.
Therefore, the introduced equations in [19] can be used
after determining the voltage and current. Note that
for the symmetrical and reciprocal structures, S11 = S22,
S12 = S21, and according to the conservation of the power
principle, jS11j2 + jS21j2 = 1 [14].

Equation (13) shows that the final solution’s accuracy
depends on Z(x) and Y(x). There is no closed-form expres-
sion for most practical nonuniform structures, and the
numerical techniques should be used to compute Z(x)
and Y(x) [20].

The proposed technique can be easily developed for
a nonuniform waveguide operating in its dominant
mode. Here, the electric and magnetic fields have only
one component. It is shown in [21] that the wave-
guide’s dominant mode has a characteristic field pat-
tern across any section of the waveguide structure.
Therefore, the amplitude variations of the electric and
magnetic fields along the waveguide can be modeled by
the currents and voltages, satisfying the transmission
line equations as

dV=dx¼ jηβ2=k
� �

I and ð25aÞ

dI=dx¼ jk=ηð ÞV , ð25bÞ

where

k¼ω
ffiffiffiffiffi
με

p
,η¼

ffiffiffiffiffiffiffiffi
μ=ε

p
, ð26Þ

where β is the propagation constant. Note that the above
equations are only valid for a uniform waveguide. As
shown in Equation (13), only Z(x) and Y(x) are needed
for analyzing a nonuniform waveguide. The per unit
length impedance and admittance of a rectangular wave-
guide with a nonuniform profile in the dominant mode
TE10 can be found in [11].

Z xð Þ¼ jωμh=w xð Þ, ð27aÞ

Y xð Þ¼ jγ2 xð Þw xð Þ=ωμh, and ð27bÞ

γ xð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� π=w xð Þð Þ2

q
, ð27cÞ

where h, w(x), and tanδ are the waveguide’s height and
width and the dielectric loss tangent, respectively. Now,
by specifying Z(x) and Y(x), the waveguide’s voltage,

F I GURE 2 The flowchart of the proposed procedure
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current, and scattering parameters can be determined.
For other types of waveguides, a similar procedure can be
applied.

3 | RESULTS AND DISCUSSIONS

This section examines several theoretical and practical
TLs and waveguides with nonuniform profiles to evaluate
the proposed approach’s performance. For the practical
examples, the results are compared to those obtained
from simulations (using HFSS software), measurements,
and the Uniform Cascaded Section (UCS) method [20].

3.1 | Uniform transmission line

In the first case, a uniform TL line is considered, with
parameters L0 = 0.33 μH/m, C0 = 33.33 pF/m, R0 = 2 Ω/
m, G0 = 0.2S/m, l = 20 mm, VS = 1 v, ZL = 100 Ω, and
ZS = 50 Ω. The exact solution of the uniform TL can be
found in [18]. Figure 3 compares the magnitude and
phase of the calculated voltage and current versus fre-
quency and position from the exact formulas and the pro-
posed method, respectively. There is excellent agreement
between the results of the proposed and theoretical
approaches.

3.2 | Catenary transmission line

The catenary TL is frequently used in power systems,
including high-voltage overhead lines and electrified

railways. In the second case, a catenary TL with the fol-
lowing profile is considered [22].

y xð Þ¼ qcosh x=q� l=2qð Þ: ð28Þ

The per unit length impedance and admittance of a cate-
nary TL are calculated as

Z xð Þ¼ jωμ=2πð Þcosh�1 2y xð Þ=r0ð Þ and ð29aÞ

Y xð Þ¼ j2πωε=cosh�1 2y xð Þ=r0ð Þ, ð29bÞ

where q = 2, l = 1 m, and r0 = 1 mm are the parameters
of the line and VS = 1 v, ZL = 75 Ω, and ZS = 50.
Figure 4 shows that the propagation constant is not a
function of x, and γ 2 = Z(x)Y(x) = cte.

Note that there is no exact solution for the catenary
TL. Figure 5 shows the magnitude and phase of the cal-
culated voltage and current versus frequency and posi-
tion from the proposed and TMM methods in [23]. There
is excellent agreement between the results of the pro-
posed and theoretical approaches. These figures show
excellent agreement between the results.

3.3 | Nonuniform microstrip line

The microstrip lines with nonuniform profiles are used in
microwave circuits as resonators and filters. In [24], a
low-pass filter is designed using the nonuniform micro-
strip line with parameters of εr = 3.5, H = 768 μm, and
l = 10 cm. Two filter ports are terminated with 50 Ω

F I GURE 3 Comparison between the proposed method and

the exact solution of V and I of a single uniform TL (A)jVj(v), (B)jIj
(mA), (C) ∠V (rad), (D) ∠I (rad) F I GURE 4 The propagation constant of the catenary TL
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impedance. Figure 6 shows the strip’s width as a function
of x. Figure 7 compares the response of the filter obtained
from the proposed method with those obtained from sim-
ulations, measurements, and the UCS method. The intro-
duced technique and other data correlate well.

3.4 | Nonuniform TL with sharp
discontinuities

A nonuniform TL with sharp discontinuities is used for
various applications such as filters. A microstrip TL with

a stepped profile is considered the fourth case. The struc-
ture’s parameters are εr = 4.4, tanδ = 0.02, H = 1.6 mm,
and ZS = ZL = 50 Ω. This structure comprises six steps,
where the widths of the highest and lowest steps are 11.1
and 0.4080 mm, respectively. Figure 8 shows the fabri-
cated filter with dimensions. Figures 9 and 10 show the
structure’s scattering parameters, including the obtained
results of the proposed method, simulations, measure-
ments [25], and the UCS technique in the frequency
range of 0 to 5 GHz. For the magnitude of S11, there is a
difference of approximately 10 dB between the results of
the proposed method and simulation/measurement data
at lower frequencies, which is also true for the UCS tech-
nique’s results. The mismatch between the results is due
to the connector effect, which is excluded in the proposed
and UCS procedures. Additionally, as stated in [14], the
higher order modes will appear around the discontinu-
ities position, which are disregarded in the proposed and
UCS techniques. However, both techniques’ accuracy are
acceptable. For the magnitude of S21, the proposed

F I GURE 6 The profile of the low-pass filter with nonuniform

microstrip line

F I GURE 7 The response of the microstrip filter with a

nonuniform profile
F I GURE 5 Comparison between the proposed method and

the exact solution of V and I of the catenary TL: (A)jVj(v), (B)jIj
(mA), (C) ∠V (rad), (D) ∠I (rad)

F I GURE 8 The photo of the fabricated stepped filter with

dimensions in mm [25]
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method’s accuracy is higher than the UCS technique at
all frequencies.

3.5 | Nonuniform substrate-integrated
waveguide (SIW)

The introduced technique can also analyze a nonuniform
waveguide operating in its dominant mode. A double-
slop linearly tapered SIW operating in a fundamental
TE10 mode is considered in the fifth case. Figure 11
shows that the parameters of this structure are εr = 3.66,
tanδ = 0.0037, H = 254 μm, l = 44 mm, and
ZS = ZL = 50 Ω. In the SIW structure, the width of an
equivalent rectangular waveguide section is determined
as [11]

W eff ¼W a1þ a2
S=dþ a1þa2�a3ð Þ= a3�a1ð Þ

	
, ð30aÞ

a1 ¼ 1:019þ0:346= W=S�1:068ð Þ, ð30bÞ

a2 ¼�0:118þ1:272= W=S�1:201ð Þ, and ð30cÞ

a3 ¼ 1:008þ0:916= W=Sþ0:215ð Þ, ð30dÞ

where W is the physical width of the SIW. The SIW’s per
unit length parameters are calculated using the closed-
form formulas introduced in [26]. The structure’s scatter-
ing parameters are plotted in Figures 12 and 13, includ-
ing the obtained results of the proposed method,
simulations, measurements [11], and the UCS technique
in the frequency range of 14 GHz to 18 GHz. The UCS
method’s performance is not good because, in general,
the UCS technique cannot be applied to a nonuniform
waveguide. The slight frequency shift is approximately
0.18 GHz over the frequency range of 14 GHz to 18 GHz
and is due to the transition between the SIW and Sub-
Miniature version A (SMA) connectors and the fabrica-
tion imperfections, which are not regarded in the
proposed method.

The mentioned conditions cause a peak magnitude
deviation of approximately 4 dB, especially at resonance

F I GURE 1 0 Magnitude of S21 of the stepped impedance filter

F I GURE 1 1 The photo of fabricate nonuniform SIW [11]

F I GURE 1 2 Magnitude of S11 of the SIW structure

F I GURE 9 Magnitude of S11 of the stepped impedance filter
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frequencies. However, the precision of the obtained
results is acceptable over a wide frequency range.

Figure 14 shows all studied examples’ most crucial
singular values. By ignoring the coefficient matrix’s non-
principal singular values, the round-off error and the
computational cost will significantly decrease. The figure
shows that most of the singular values of the lower rank
coefficient matrix AQ are on the same level.

Table 1 reports the crucial parameters of all cases,
including the required time t, number of segments N,
total number of iterations T, and condition number of
the coefficient matrix τ. Note that the condition number
measures a problem’s sensitivity [27]. The condition
number of all examined cases is in an acceptable range.
Therefore, the proposed method’s sensitivity is low
regarding the discretization error. Also, for all studied

cases, only one or two iterations are sufficient to obtain
an answer with excellent accuracy. Moreover, the pro-
posed method uses a PC with a CPU core i5 @2.3GHz
and 4G RAM. The required running time shows that the
method is computationally inexpensive.

4 | CONCLUSIONS

This article introduced a new technique based on the
flexible finite-difference method to analyze nonuniform
transmission lines and waveguides. Therefore, adjustable
discretization steps are employed for each segment to
increase the final outcome’s accuracy. The method can
calculate the voltage and current values, including the
magnitude and phase and the scattering parameters of a
nonuniform guiding structure. Additionally, the singular
value decomposition is used to reduce the computational
complexity. The method is straightforward to implement,
accurate, and faster than the traditional discretization
techniques. The proposed approach’s performance is con-
firmed by analyzing several practical transmission lines
and waveguides with nonuniform profiles.
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