DOI QR코드

DOI QR Code

Research Trends in Quantum Machine Learning

양자컴퓨팅 & 양자머신러닝 연구의 현재와 미래

  • J.H. Bang
  • 방정호 (양자컴퓨팅연구실)
  • Published : 2023.10.01

Abstract

Quantum machine learning (QML) is an area of quantum computing that leverages its principles to develop machine learning algorithms and techniques. QML is aimed at combining traditional machine learning with the capabilities of quantum computing to devise approaches for problem solving and (big) data processing. Nevertheless, QML is in its early stage of the research and development. Thus, more theoretical studies are needed to understand whether a significant quantum speedup can be achieved compared with classical machine learning. If this is the case, the underlying physical principles may be explained. First, fundamental concepts and elements of QML should be established. We describe the inception and development of QML, highlighting essential quantum computing algorithms that are integral to QML. The advent of the noisy intermediate-scale quantum era and Google's demonstration of quantum supremacy are then addressed. Finally, we briefly discuss research prospects for QML.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임[2019-0-00003, 결함허용 양자컴퓨팅 시스템 프로그래밍, 구동, 검증 및 구현을 위한 요소기술 개발].

References

  1. N.D. Mermin, Quantum Computer Science: An Introduction, Cambridge University Press, Cambridge, UK, 2007.
  2. P.W. Shor, "Algorithms for quantum computation: Discrete logarithms and factoring," in Proc. Annu. Symp. Found. Comput. Sci., (Santa Fe, NM, USA), Nov. 1994.
  3. L.K. Grover, "Quantum mechanics helps in searching for a needle in a haystack," Phys. Rev. Lett., vol. 79, no. 2, 1997, article no. 325.
  4. J. Preskill, "Quantum computing in the NISQ era and beyond," Quantum, vol. 2, 2018, p. 79.
  5. S. McArdle et al., "Quantum computational chemistry," Rev. Mod. Phys., vol. 92, no. 1, 2020, article no. 015003.
  6. J. Biamonte et al., "Quantum machine learning," Nature, vol. 549, no. 7671, 2017, pp. 195-202.
  7. A.W. Harrow, A. Hassidim, and S. Lloyd, "Quantum algorithm for linear systems of equations," Phys. Rev. Lett., vol. 103, no. 15, 2009, article no. 150502.
  8. P. Rebentrost, M. Mohseni, and S. Lloyd, "Quantum support vector machine for big data classification," Phys. Rev. Lett., vol. 113, no. 13, 2014, article no. 130503.
  9. C. Ciliberto et al., "Quantum machine learning: A classical perspective," Proc. Royal Soc. A: Math. Phys. Eng. Sci., vol. 474, no. 2209, 2018.
  10. T. Monzet al., "Realization of a scalable Shor algorithm," Science, vol. 351, no. 6277, 2016, pp. 1068-1070.
  11. A. Bouland et al., "On the complexity and verification of quantum random circuit sampling," Nat. Phys., vol. 15, no. 2, 2019, pp. 159-163. https://doi.org/10.1038/s41567-018-0318-2
  12. S. Boixo et al., "Characterizing quantum supremacy in near-term devices," Nat. Phys., vol. 14, no. 6, 2018, pp. 595-600. https://doi.org/10.1038/s41567-018-0124-x
  13. F. Arute et al., "Quantum supremacy using a programmable superconducting processor," Nature, vol. 574, no. 7779, 2019, pp. 505-510.