References
- Basu, S., S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki and R. Nemani. 2015. Deepsat: a learning framework for satellite imagery. In Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems pp. 1-10.
- Cheng, B., B. Xiao, J. Wang, H. Shi, T.S. Huang and L. Zhang. 2020. Higherhrnet: Scale-aware representation learning for bottom-up human pose estimation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition pp. 5386-5395.
- Choung. Y.J. 2014. Analysis of Land Uses in the Nakdong River Floodplain Using RapidEye Imagery and LiDAR DEM. Journal of the Korean Association of Geographic Information Studies 17(4): 189-199 (정윤재. 2021. RapidEye 영상과 LiDAR DEM을 이용한 낙동강 범람원 내 토지 이용 현황 분석. 한국지리정보학회지 17(4): 189-199). https://doi.org/10.11108/KAGIS.2014.17.4.189
- Delegido, J., J. Verrelst, L. Alonso and J. Moreno. 2011. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 11(7): 7063-7081. https://doi.org/10.3390/s110707063
- FAO, F. 2010. Global forest resources assessment 2010: main report. FAO Forestry Paper 163.
- Garcia-Garcia, A., S. Orts-Escolano, S. Oprea, V. Villena-Martinez and J. Garcia-Rodriguez. 2017. A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857.
- Gärtner, P., M. Förster, A. Kurban and B. Kleinschmit. 2014. Object based change detection of Central Asian Tugai vegetation with very high spatial resolution satellite imagery. International Journal of Applied Earth Observation and Geoinformation 31:110-121. https://doi.org/10.1016/j.jag.2014.03.004
- Huang, M.H. and R.T. Rust. 2018. Artificial intelligence in service. Journal of service research 21(2):155-172. https://doi.org/10.1177/1094670517752459
- Im, J., J. Rhee and J. R. Jensen. 2009. Enhancing binary change detection performance using a moving threshold window (MTW) approach. Photogrammetric Engineering & Remote Sensing 75(8): 951-961. https://doi.org/10.14358/PERS.75.8.951
- Kwon, S.K., E.H. Kim, J.B. Lim and A.R. Yang. 2021. The Analysis of Changes in Forest Status and Deforestation of North Korea's DMZ Using RapidEye Satellite Imagery and Google Earth. Journal of the Korean Association of Geographic Information Studies 24(4):113-126 (권수경, 김은희, 임중빈, 양아람. 2021. RapidEye 위성영상과 구글 어스를 활용한 북한 DMZ의 산림현황 및 산림황폐지 변화 분석. 한국지리정보학회지 24(4):113-126). https://doi.org/10.11108/KAGIS.2021.24.4.113
- LeCun, Y. 1989. Generalization and network design strategies. in Connectionism Perspective. Elsevier pp. 143–155.
- Li, L., Q. Yang, R. Shi and J. Teng. 2023. MSCR-HRNetV2: High-Resolution Remote Sensing Image Segmentation for Railway Scenes. In 2023 China Automation Congress (CAC) pp. 5809- 5814. IEEE.
- Lin, T., P. Goyal, R.B. Girshick, K. He and P. Dollár. 2017. Focal Loss for Dense Object Detection. 2017 IEEE International Conference on Computer Vision pp. 2999-3007.
- Liu, D. and F. Xia. 2010. Assessing object-based classification: advantages and limitations. Remote sensing letters 1(4):187-194. https://doi.org/10.1080/01431161003743173
- Loshchilov, I. and F. Hutter. 2017. Fixing weight decay regularization in adam. arXiv preprint arXiv: 1711.05101.
- Milletari, F., N. Navab and S. A. Ahmadi. 2016. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 2016 fourth internationalconference on 3D vision (3DV) pp. 565 -571. Ieee.
- Návar, J. 2015. Changes in Forest Production, Biomass and Carbon: Results From the 2015 UN FAO Global Forest Resource Assessment. Forest Ecology and Management 352:21-34. https://doi.org/10.1016/j.foreco.2015.05.036
- Park, J.H., K.D. Kim and M.J. Kang. 2016. Analysis of Quarrying and Restoration Characteristics on Quarry in Korea. Journal of Korean Society of Forest Science 105(2):223-230 (박재현, 김기대, 강민정. 2016. 국내 토석사업장의 토석채취 및 복구특성 분석. 한국산림과학회지 105(2) :223-230).
- Park, J.H., C.M. Park and J.W. Lee. 2010. Analysis of the Restoration Actual Conditions on the Quarries. Journal of the Korean Society of Environmental Restoration Technology 13(3):128-142 (박재현, 박종민, 이준우. 2010. 토석채취지의 복구 실태 분석. 한국환경복원기술학회지 13(3):128-142).
- Park, J.H. 2012. Analysis of the Restoration Actual Conditions on the Quarries II. Journal of Korean Forest Society 101(4):558-566 (박재현. 2012. 토석채취지의 복구 실태 분석 Ⅱ. 한국산림과학회지 101(4):558-566).
- Park. J.H. and T.R. Kim. 2021. Analysis of Drone Surveying Using a Low-Cost PPK Kit. Journal of the korean gromophological association 28(4):41-52 (박준호, 김태림. 2021. PPK Kit를 활용한 드론 측량분석. 한국지형학회지 28(4): 41-52).
- Rouhi, R., M. Jafari, S. Kasaei and P. Keshavarzian. 2015. Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Systems with Applications 42(3): 990-1002. https://doi.org/10.1016/j.eswa.2014.09.020
- Rouse, J.W., R.H. Haas, J.A. Schell and D.W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ 351(1): 309.
- Schöpfer, E., S. Lang and J. Strobl. 2010. Segmentation and object-based image analysis. Remote sensing of urban and suburban areas 181-192.
- Smith, L.N. and N. Topin. 2019. Superconvergence: Very fast training of neural networks using large learning rates. In Artificial intelligence and machine learning for multi-domain operations applications. pp. 369-386. SPIE.
- Sun, K., B. Xiao, D. Liu and J. Wang. 2019. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition pp. 5693-5703.
- Wang, J., K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X. Wang, W. Liu and B. Xiao. 2020. Deep high-resolution representation learning for visual recognition. IEEE transactions on pattern analysis and machine intelligence 43(10):3349-3364. https://doi.org/10.1109/TPAMI.2020.2983686
- Wang, Z., E.P. Simoncelli and A.C. Bovik. 2003. Multiscale structural similarity for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers pp. 1398 -1402.
- Won, M.S., Y.S. Kim and K.H. Kim. 2014. Estimation on Greenhouse Gases(GHGs) Emission of Large Forest Fire Area in 2013. Journal of the Korean Association of Geographic Information Studies 17(3): 54-67 (원명수, 김유승, 김경하. 2014. RapidEye 영상을 활용한 대형산불피해지의 온실가스 배출량 추정. 한국지리정보학회지 17(3):54-67). https://doi.org/10.11108/KAGIS.2014.17.3.054