DOI QR코드

DOI QR Code

Recent Research on Self-interference Incoherent Digital Holography

  • Youngrok Kim (Department of Information Display, Kyung Hee University) ;
  • Ki-Hong Choi (Digital Holography Research Section, Electronics and Telecommunications Research Institution) ;
  • Chihyun In (Department of Information Display, Kyung Hee University) ;
  • Keehoon Hong (Digital Holography Research Section, Electronics and Telecommunications Research Institution) ;
  • Sung-Wook Min (Department of Information Display, Kyung Hee University)
  • Received : 2023.10.30
  • Accepted : 2023.12.07
  • Published : 2024.02.25

Abstract

This paper presents a brief introduction to self-interference incoherent digital holography (SIDH). Holography conducted under incoherent light conditions has various advantages over digital holography performed with a conventional coherent light source. We categorize the methods for SIDH, which divides the incident light into two waves and modulates them differently. We also explore various optical concepts and techniques for the implementation and advancement of SIDH. This review presents the system design, performance analysis, and improvement of SIDH, as well as recent applications of SIDH, including optical sectioning and deep-learning-based SIDH.

Keywords

Acknowledgement

Institute for Information and Communications Technology Promotion (2019-0-00001).

References

  1. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
  2. J. W. Goodman, Introduction to Fourier optics (Roberts & Co, USA, 2005).
  3. S. Ulf and J. Werner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, Germany, 2005).
  4. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, (Springer Series in Optical Sciences vol. 162) (Springer New York, USA, 2011).
  5. X. Yu, J. Hong, C. Liu, and M. K. Kim, "Review of digital holographic microscopy for three-dimensional profiling and tracking," Opt. Eng. 53, 112306 (2014).
  6. F. Yaras, H. Kang, and L. Onural, "State of the art in holographic displays: A survey," J. Disp. Technol. 6, 443-454 (2010).
  7. C. Chang, K. Bang, G. Wetzstein, B. Lee, and L. Gao, "Toward the next-generation VR/AR optics: A review of holographic near-eye displays from a human-centric perspective," Optica 7, 1563-1578 (2020).
  8. P.-A. Blanche, "Holography, and the future of 3D display," Light. Adv. Manuf. 2, 446-459 (2021).
  9. J. An, K. Won, and H.-S. Lee, "Past, current, and future of holographic video display," Appl. Opt. 61, B237-B245 (2022).
  10. J.-H. Park, "Recent progress in computer-generated holography for three-dimensional scenes," J. Inf. Disp. 18, 1-12 (2017).
  11. E. Sahin, E. Stoykova, J. Makinen, and A. Gotchev, "Computer-generated holograms for 3D imaging: A survey," ACM Comput. Surv. 53, 32 (2020).
  12. N. Kipnis, History of the Principle of Interference of Light (Birkhauser Basel, 1991).
  13. A. A. Michelson and E. W. Morley, "On the Relative Motion of the Earth and the Luminiferous Ether," Am. J. Sc. 34, 333-345 (1887).
  14. G. W. Stroke and R. C. Restrick III, "Holography with spatially noncoherent light," Appl. Phys. Lett. 7, 229-231 (1965).
  15. A. W. Lohmann, "Wavefront reconstruction for incoherent objects," J. Opt. Soc. Am. 55, 1555-1556 (1965).
  16. H. Worthington, "Production of holograms with incoherent illumination," J. Opt. Soc. Am. 56, 1397-1398 (1966).
  17. O. Bryngdahl and A. Lohmann, "One-dimensional holography with spatially incoherent light," J. Opt. Soc. Am. 58, 625-628 (1968).
  18. T.-C. Poon, Optical Scanning Holography with MATLAB® (Springer US, USA, 2007).
  19. T.-C. Poon, "Optical scanning holography-A review of recent progress," J. Opt. Soc. Korea 13, 406-415 (2009).
  20. J. Rosen and G. Brooker, "Digital spatially incoherent Fresnel holography," Opt. Lett. 32, 912-914 (2007).
  21. B. Katz and J. Rosen, "Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements," Opt. Express 18, 962-972 (2010).
  22. P. J. Peters, "Incoherent holograms with mercury light source," Appl. Phys. Lett. 8, 209-210 (1966).
  23. O. Bryngdahl and A. Lohmann, "Variable magnification in incoherent holography," Appl. Opt. 9, 231-232 (1970).
  24. S.-G. Kim, B. Lee, and E.-S. Kim, "Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram," Appl. Opt. 36, 4784-4791 (1997).
  25. E. Ribak, C. Roddier, F. Roddier, and J. B. Breckinridge, "Signal-to-noise limitations in white light holography," Appl. Opt. 27, 1183-1186 (1988).
  26. K. Itoh, T. Inoue, T. Yoshida, and Y. Ichioka, "Interferometric super multispectral imaging," Appl. Opt. 29, 1625-1630 (1990).
  27. I. Moreno, G. Paez, and M. Strojnik, "Dove prism with increased throughput for implementation in a rotationalshearing interferometer," Appl. Opt. 42, 4514-4521 (2003).
  28. K. Watanabe and T. Nomura, "Recording spatially incoherent Fourier hologram using dual channel rotational shearing interferometer," Appl. Opt. 54, A18-A22 (2015).
  29. T. Nomura, K. Itoh, and Y. Ichioka, "Hybrid high speed pattern matching using a binary incoherent hologram generated by a rotational shearing interferometer," Appl. Opt. 28, 4987-4991 (1989).
  30. K. Watanabe and T. Nomura, "Spatially incoherent Fourier digital holography by four-step phase-shifting rotational shearing interferometer and its image quality," Opt. Rev. 24, 351-360 (2017).
  31. M. K. Kim, "Adaptive optics by incoherent digital holography," Opt. Lett. 37, 2694-2696 (2012).
  32. M. K. Kim, "Full color natural light holographic camera," Opt. Express 21, 9636-9642 (2013).
  33. J. Hong and M. Kim, "Overview of techniques applicable to self-interference incoherent digital holography," J. Eur. Opt. Soc. Rapid Pub. 8, 13077 (2013).
  34. O. Cossairt, N. Matsuda, and M. Gupta, "Digital refocusing with incoherent holography," in Proc. 2014 IEEE International Conference on Computational Photography-ICCP (Santa Clara, CA, USA, May 2-4, 2014), pp. 1-9.
  35. D. C. Clark and M. K. Kim, "Nonscanning three-dimensional differential holographic fluorescence microscopy," J. Electron. Imaging 24, 043014 (2015).
  36. T. Yanagawa, R. Abe, and Y. Hayasaki, "Three-dimensional mapping of fluorescent nanoparticles using incoherent digital holography," Opt. Lett. 40, 3312-3315 (2015).
  37. A. W. Lohmann and W. T. Rhodes, "Two-pupil synthesis of optical transfer functions," Appl. Opt. 17, 1141-1151 (1978).
  38. G. Pedrini, H. Li, A. Faridian, and W. Osten, "Digital holography of self-luminous objects by using a Mach-Zehnder setup," Opt. Lett. 37, 713-715 (2012).
  39. D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, "Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer," Opt. Lett. 39, 1857-1860 (2014).
  40. J. Hong and M. K. Kim, "Single-shot self-interference incoherent digital holography using off-axis configuration," Opt. Lett. 38, 5196-5199 (2013).
  41. D. Muhammad, C. M. Nguyen, J. Lee, and H.-S. Kwon, "Spatially incoherent off-axis Fourier holography without using spatial light modulator (SLM)," Opt. Express 24, 22097-22103 (2016). 
  42. C. M. Nguyen, D. Muhammad, and H.-S. Kwon, "Spatially incoherent common-path off-axis color digital holography," Appl. Opt. 57, 1504-1509 (2018).
  43. D. Muhammad, C. M. Nguyen, J. Lee, and H.-S. Kwon, "Incoherent off-axis Fourier holography for different colors using a curved mirror," Opt. Commun. 393, 25-28 (2017).
  44. C. M. Nguyen and H.-S. Kwon, "Common-path off-axis incoherent Fourier holography with a maximum overlapping interference area," Opt. Lett. 44, 3406-3409 (2019).
  45. R. Kelner and J. Rosen, "Spatially incoherent single channel digital Fourier holography," Opt. Lett. 37, 3723-3725 (2012).
  46. N. Siegel and G. Brooker, "Improved axial resolution of finch fluorescence microscopy when combined with spinning disk confocal microscopy," Opt. Express 22, 22298-22307 (2014).
  47. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, "Coded aperture correlation holography-A new type of incoherent digital holograms," Opt. Express 24, 12430-12441 (2016).
  48. J. Rosen and G. Brooker, "Fluorescence incoherent color holography," Opt. Express 15, 2244-2250 (2007).
  49. J. Rosen and G. Brooker, "Non-scanning motionless fluorescence three-dimensional holographic microscopy," Nat. Photonics 2, 190-195 (2008).
  50. P. Bouchal and Z. Bouchal, "Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams," J. Eur. Opt. Soc. publications 8, 13011 (2013).
  51. B. Katz, J. Rosen, R. Kelner, and G. Brooker, "Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM)," Opt. Express 20, 9109-9121 (2012).
  52. N. Siegel, J. Rosen, and G. Brooker, "Reconstruction of objects above and below the objective focal plane with dimensional fidelity by finch fluorescence microscopy," Opt. Express 20, 19822-19835 (2012).
  53. X. Quan, O. Matoba, and Y. Awatsuji, "Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings," Opt. Lett. 42, 383-386 (2017).
  54. R. Kelner, J. Rosen, and G. Brooker, "Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference," Opt. Express 21, 20131-20144 (2013).
  55. L. M. Mugnier and G. Y. Sirat, "On-axis conoscopic holography without a conjugate image," Opt. Lett. 17, 294-296 (1992).
  56. L. M. Mugnier, G. Y. Sirat, and D. Charlot, "Conoscopic holography: two-dimensional numerical reconstructions," Opt. Lett. 18, 66-68 (1993).
  57. L. M. Mugnier, "Conoscopic holography: Toward three-dimensional reconstructions of opaque objects," Appl. Opt. 34, 1363-1371 (1995).
  58. O. Mudanyali, D. Tseng, C. Oh, S.O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, "Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications," Lab Chip 10, 1417-1428 (2010).
  59. N. Siegel, V. Lupashin, B. Storrie, and G. Brooker, "High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers," Nat. Photon. 10, 802-808 (2016).
  60. N. Siegel and G. Brooker, "Single shot holographic super-resolution microscopy," Opt. Express 29, 15953-15968 (2021).
  61. T. Tahara, A. Ishii, T. Ito, Y. Ichihashi, and R. Oi, "Single-shot wavelength-multiplexed digital holography for 3D fluorescent microscopy and other imaging modalities," Appl. Phys. Lett. 117, 031102 (2020).
  62. T. Tahara, T. Koujin, A. Matsuda, A. Ishii, T. Ito, Y. Ichihashi, and R. Oi, "Incoherent color digital holography with computational coherent superposition for fluorescence imaging [Invited]," Appl. Opt. 60, A260-A267 (2021).
  63. T. Shimano, Y. Nakamura, K. Tajima, M. Sao, and T. Hoshizawa, "Lensless light-field imaging with Fresnel zone aperture: quasi-coherent coding," Appl. Opt. 57, 2841-2850 (2018).
  64. J. Wu, H. Zhang, W. Zhang, G. Jin, L. Cao, and G. Barbastathis, "Single-shot lensless imaging with Fresnel zone aperture and incoherent illumination," Light Sci. Appl. 9, 53 (2020).
  65. J. Wu, L. Cao, and G. Barbastathis, "DNN-FZA camera: A deep learning approach toward broadband FZA lensless imaging," Opt. Lett. 46, 130-133 (2021).
  66. X. Chen, X. Pan, T. Nakamura, T. S. Takeyama, T. Shimano, K. Tajima, and M. Yamaguchi, "Wave-optics-based image synthesis for super resolution reconstruction of a FZA lensless camera," Opt. Express 31, 12739-12755
  67. J. Chen, F. Wang, Y. Li, X. Zhang, K. Yao, Z. Guan, and X. Liu, "Lensless computationally defined confocal incoherent imaging with a Fresnel zone plane as coded aperture," Opt. Lett. 48, 4520-4523
  68. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, "Coded aperture correlation holography system with improved performance," Appl. Opt. 56, F67-F77 (2017).
  69. J. Rosen, V. Anand, M. Rai, S. Mukherjee, and A. Bulbul, "Review of 3D imaging by coded aperture correlation holography (COACH)," Appl. Sci. 9, 605 (2019).
  70. J. Rosen, "Advanced imaging methods using coded aperture digital holography," Eng. Proc. 34, 2 (2023).
  71. N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, "DiffuserCam: Lensless single-exposure 3D imaging," Optica 5, 1-9 (2018).
  72. S. Mukherjee, A. Vijayakumar, M. Kumar, and J. Rosen, "3D Imaging through Scatterers with Interferenceless Optical System," Sci. Rep. 8, 1134 (2018).
  73. A. Bulbul, N. Hai, and J. Rosen, "Coded aperture correlation holography (COACH) with a superior lateral resolution of FINCH and axial resolution of conventional direct imaging systems," Opt. Express 29, 42106-42118 (2021).
  74. A. Bulbul, A. Vijayakumar, and J. Rosen, "Partial aperture imaging by systems with annular phase coded masks," Opt. Express 25, 33315-33329 (2017). 
  75. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
  76. J. Rosen and R. Kelner, "Modified Lagrange invariants and their role in determining transverse and axial resolutions of self-interference incoherent holographic systems," Opt. Express 22, 29048-29066 (2014).
  77. G. Pedrini, H. Li, A. Faridian, and W. Osten, "Digital holography of self-luminous objects by using a Mach-Zehnder setup," Opt. Lett. 37, 713-715 (2012).
  78. T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, "Parallel phase-shifting digital holographic microscopy," Biomed. Opt. Express 1, 610-616 (2010).
  79. T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, "Single-shot phase-shifting incoherent digital holography," J. Opt. 19, 065705 (2017).
  80. T. Tahara, A. Ishii, T. Ito, Y. Ichihashi, and R. Oi, "Single-shot wavelength-multiplexed digital holography for 3d fluorescent microscopy and other imaging modalities," Appl. Phys. Lett. 117, 031102 (2020).
  81. T. Tahara, T. Ito, Y. Ichihashi, and R. Oi, "Single-shot incoherent color digital holographic microscopy system with static polarization-sensitive optical elements," J. Opt. 22, 105702 (2020).
  82. K. Choi, K.-I. Joo, T.-H. Lee, H.-R. Kim, J. Yim, H. Do, and S.-W. Min, "Compact self-interference incoherent digital holographic camera system with real-time operation," Opt. Express 27, 4818-4833 (2019).
  83. T. Tahara, Y. Kozawa, and R. Oi, "Single-path single-shot phase-shifting digital holographic microscopy without a laser light source," Opt. Express 30, 1182-1194 (2022).
  84. S. Sakamaki, N. Yoneda, and T. Nomura, "Single-shot in-line Fresnel incoherent holography using a dual-focus checkerboard lens," Appl. Opt. 59, 6612-6618 (2020).
  85. Y. Zhang, M.-T. Wu, M.-Y. Tang, F.-Y. Ma, E.-J. Liang, Y.-L. Du, Z.-Y. Duan, and Q.-X Gong, "Fresnel incoherent correlation hologram recording in real-time," Optik 241, 166938 (2021).
  86. T. Nobukawa, Y. Katano, M. Goto, T. Muroi, K. Hagiwara, and N. Ishii, "Grating-based in-line geometric-phase-shifting incoherent digital holographic system toward 3D videography," Opt. Express 30, 27825-27840 (2022).
  87. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, "Fabrication of ideal geometric-phase holograms with arbitrary wavefronts," Optica 2, 958-964 (2015).
  88. K. Gao, H.-H. Cheng, A. K. Bhowmik, and P. J. Bos, "Thinfilm Pancharatnam lens with low f-number and high quality," Opt. Express 23, 26086-26094 (2015).
  89. N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, "Thin waveplate lenses of switchable focal length-new generation in optics," Opt. Express 23, 25783-25794 (2015).
  90. Z. Liu, D. Wang, H. Gao, M. Li, H. Zhou, and C. Zhang, "Metasurface-enabled augmented reality display: A review," Proc. SPIE 5, 034001 (2023).
  91. S. Pancharatnam, "Generalized theory of interference, and its applications," P. Indian. Acad. Sci. A 44, 247-262 (1956).
  92. M. V. Berry, "Quantal phase factors accompanying adiabatic changes," P. Roy. Soc. Lond. A. Mat. 392, 45-57 (1984).
  93. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science 345, 298-302 (2014).
  94. N. Yu and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater 13, 139-150 (2014).
  95. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces," Science 339, 1232009 (2013).
  96. R. Bhandari, "Polarization of light and topological phases," Phys. Rep. 281, 1-64 (1997).
  97. F. S. Roux, "Geometric phase lens," J. Opt. Soc. Am. A 23, 476-482 (2006).
  98. T. Tahara, T. Ito, Y. Ichihashi, and R. Oi, "Multiwavelength three-dimensional microscopy with spatially incoherent light, based on computational coherent superposition," Opt. Lett. 45, 2482-2485 (2020).
  99. P. Hariharan and P. Ciddor, "An achromatic phase-shifter operating on the geometric phase," Opt. Commun. 110, 13-17 (1994).
  100. K. Choi, J. Yim, S. Yoo, and S.-W. Min, "Self-interference digital holography with a geometric-phase hologram lens," Opt. Lett. 42, 3940-3943 (2017).
  101. K. Choi, J. Yim, and S.-W. Min, "Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens," Opt. Express 26, 16212-16225 (2018).
  102. K. Choi, J.-W. Lee, J. Shin, K. Hong, J. Park, and H.-R. Kim, "Real-time noise-free inline self-interference incoherent digital holography with temporal geometric phase multiplexing," Photonics Res. 11, 906-916 (2023).
  103. D. Liang, Q. Zhang, J. Wang, and J. Liu, "Single-shot Fresnel incoherent digital holography based on geometric phase lens," J. Mod. Opt. 67, 92-98 (2020).
  104. T. Tahara and R. Oi, "Palm-sized single-shot phase-shifting incoherent digital holography system," OSA Continuum 4, 2372-2380 (2021).
  105. J. Ahn, K. Ko, J.-H. Kyhm, H.-S Ra, H. Bae, D.-Y. Kim J. Jang, T.W. Kim, S. Choi, J.-H. Kang, N. Kwon, S. Park, B.-K. Ju, T.-C. Poon, and M.-C. Park, "Near-infrared self-powered linearly polarized photodetection and digital incoherent holography using WSe2/ReSe2 van der Waals heterostructure," ACS nano 15, 17917-17925 (2021).
  106. H. Zhou, L. Huang, X. Li, X. Li, G. Geng, K. An, Z. Li, and Y. Wang, "All-dielectric bifocal isotropic metalens for a single-shot hologram generation device," Opt. Express 28, 21549-21559 (2020).
  107. J. Lee, Y. Kim, K. Choi, J. Hahn, S.-W. Min, and H. Kim, "Digital incoherent compressive holography using a geometric phase metalens," Sensors 21, 5624 (2021).
  108. J. Rosen, N. Siegel, and G. Brooker, "Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by finch fluorescence microscopic imaging," Opt. Express 19, 26249-26268 (2011).
  109. G. Brooker, N. Siegel, V. Wang, and J. Rosen, "Optimalresolution in Fresnel incoherent correlation holographic fluorescence microscopy," Opt. Express 19, 5047-5062 (2011).
  110. P. Bouchal, J. Kapitan, R. Chmelik, and Z. Bouchal, "Point spread function and two-point resolution in Fresnel incoherent correlation holography," Opt. Express 19, 15603-15620 (2011).
  111. P. Jeon, J. Kim, H. Lee, H.-S. Kwon, and D. Kim, "Comparative study on resolution enhancements in fluorescencestructured illumination Fresnel incoherent correlation holography," Opt. Express 29, 9231-9241 (2021).
  112. X. Lai, S. Zeng, X. Lv, J. Yuan, and L. Fu, "Violation of the Lagrange invariant in an optical imaging system," Opt. Lett. 38, 1896-1898 (2013).
  113. X. Lai, S. Xiao, Y. Guo, X. Lv, and S. Zeng, "Experimentally exploiting the violation of the Lagrange invariant for resolution improvement," Opt. Express 23, 31408-31418 (2015).
  114. B. Katz and J. Rosen, "Could SAFE concept be applied for designing a new synthetic aperture telescope?" Opt. Express 19, 4924-4936 (2011).
  115. Y. Kashter and J. Rosen, "Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture," Opt. Express 22, 20551-20565 (2014).
  116. M. R. Rai and J. Rosen, "Optical incoherent synthetic aperture imaging by superposition of phase-shifted optical transfer functions," Opt. Lett. 46, 1712-1715 (2021).
  117. J. P. Desai, R. Kumar, and J. Rosen, "Optical incoherent imaging using annular synthetic aperture with the superposition of phase-shifted optical transfer functions," Opt. Lett. 47, 4012-4015 (2022).
  118. Y. Kashter, A. Vijayakumar, Y. Miyamoto, and J. Rosen, "Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination," Opt. Lett. 41, 1558-1561 (2016).
  119. B. Katz, D. Wulich, and J. Rosen, "Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution," Appl. Opt. 49, 5757-5763 (2010).
  120. T. Nobukawa, Y. Katano, T. Muroi, N. Kinoshita, and N. Ishii, "Sampling requirements and adaptive spatial averaging for incoherent digital holography," Opt. Express 27, 33634-33651 (2019).
  121. K. Choi, K. Hong, J. Park, and S.-W. Min, "Michelson-interferometric-configuration-based incoherent digital holography with a geometric phase shifter," Appl. Opt. 59, 1948-1953 (2020).
  122. C. Jang, J. Kim, D. C. Clark, S. Lee, B. Lee, and M. K. Kim, "Holographic fluorescence microscopy with incoherent digital holographic adaptive optics," J. Biomed. Opt. 20, 111204 (2015).
  123. T. Muroi, T. Nobukawa, Y. Katano, K. Hagiwara, and N. Ishii, "Compensation for reconstructed image distortion using camera model with lens distortion in incoherent digital holography," Opt. Rev. 29, 420-428 (2022).
  124. R. Kelner, B. Katz, and J. Rosen, "Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system," Optica 1, 70-74 (2014).
  125. D. L. Donoho, "Compressed sensing," IEEE Trans. Inform. Theory 52, 1289-1306 (2006).
  126. Y. Rivenson, A. Stern, and J. Rosen, "Compressive multiple view projection incoherent holography," Opt. Express 19, 6109-6118 (2011).
  127. J. Weng, D. C. Clark, and M. K. Kim, "Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography," Opt. Commun. 366, 88-93 (2016).
  128. T. Man, Y. Wan, F. Wu, and D. Wang, "Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio," Appl. Opt. 56, F91-F96 (2017).
  129. L. A. DeMars, M. Mikula-Zdankowska, K. Falaggis, and R. Porras-Aguilar, "Single-shot phase calibration of a spatial light modulator using geometric phase interferometry," Appl. Opt. 59, D125-D130 (2020).
  130. P. Kumar and N. K. Nishchal, "Phase response optimization of a liquid crystal spatial light modulator with partially coherent light," Appl. Opt. 60, 10795-10801 (2021).
  131. A. Georgieva, A. Ezerskii, A. Chernykh, and N. Petrov, "Numerical displacement of target wavefront formation plane with DMD-based modulation and geometric phase holographic registration system," Atmos. Ocean. Opt. 35, 258-265 (2022).
  132. Y. Kim, S. Park, H. Baek, and S.-W. Min, "Voxel characteristic estimation of integral imaging display system using selfinterference incoherent digital holography," Opt. Express 30, 902-913 (2022).
  133. Y. Kim, H. Sung, W. Son, D.W. Seo, C. In, and S.-W. Min, "Depth formulation assessment of 1D light field display using self-interference incoherent digital holography," J. Inf. Disp. 1-10 (2023).
  134. P. Wu, D. Zhang, J. Yuan, S. Zeng, H. Gong, Q. Luo, and X. Yang, "Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography," Opt. Express 30, 5177-5191 (2022).
  135. J. Moon, K. Choi, K. Hong, J. Park, and S. K. Jung, "Learning-based noise reduction method for incoherent digital holography," in Digital Holography and Three-Dimensional Imaging (Optica Publishing Group, 2022), paper Th4A-1.
  136. T. Tahara and T. Shimobaba, "High-speed phase-shifting incoherent digital holography," Appl. Phys. B 129, 96 (2023).
  137. T. Huang, Q. Zhang, J. Li, X. Lu, J. Di, L. Zhong, and Y. Qin, "Single-shot Fresnel incoherent correlation holography via deep learning based phase-shifting technology," Opt. Express 31, 12349-12356 (2023).
  138. H. Yu, Y. Kim, D. Yang, W. Seo, Y. Kim, J.-Y. Hong, H. Song, G. Sung, Y. Sung, S.-W. Min, and H.-S Lee, "Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system," Nat. Commun. 14, 3534 (2023).