DOI QR코드

DOI QR Code

SLODAR System Development for Vertical Atmospheric Disturbance Profiling at Geochang Observatory

  • Ji Yong Joo (Department of Optical Engineering, Kongju National University) ;
  • Hyeon Seung Ha (Department of Optical Engineering, Kongju National University) ;
  • Jun Ho Lee (Department of Optical Engineering, Kongju National University) ;
  • Do Hwan Jung (Department of Optical Engineering, Kongju National University) ;
  • Young Soo Kim (Department of Optical Engineering, Kongju National University) ;
  • Timothy Butterley (Department of Physics, University of Durham)
  • Received : 2023.11.22
  • Accepted : 2023.12.20
  • Published : 2024.02.25

Abstract

Implemented at the Geochang Observatory in South Korea, our slope detection and ranging (SLO-DAR) system features a 508 mm Cassegrain telescope (f /7.8), incorporating two Shack-Hartmann wave-front sensors (WFS) for precise measurements of atmospheric phase distortions, particularly from nearby binary or double stars, utilizing an 8 × 8 grid of sampling points. With an ability to reconstruct eight-layer vertical atmospheric profiles, the system quantifies the refractive index structure function (Cn2) through the crossed-beam method. Adaptable in vertical profiling altitude, ranging from a few hundred meters to several kilometers, contingent on the separation angle of binary stars, the system operates in both wide (2.5 to 12.5 arcminute separation angle) and narrow modes (11 to 15 arcsecond separation angle), covering altitudes from 122.3 to 611.5 meters and 6.1 to 8.3 kilometers, respectively. Initial measurements at the Geochang Observatory indicated Cn2 values up to 181.7 meters with a Fried parameter (r0) of 8.4 centimeters in wide mode and up to 7.8 kilometers with an r0 of 8.0 centimeters in narrow mode, suggesting similar seeing conditions to the Bohyun Observatory and aligning with a comparable 2014-2015 seeing profiling campaign in South Korea.

Keywords

Acknowledgement

The research grant of the Kongju National University in 2022; the DRATRI grant funded by DAPA (Laser guide star adaptive optics, Grant no. UC200014D*).

References

  1. R. Wilson, "Results of the JOSE site evaluation project for adaptive optics at the William Herschel Telescope," New Astron. Rev. 42, 465-469 (1998).
  2. B. L. Ellerbroek and F. J. Rigaut, "Scaling multiconjugate adaptive optics performance estimates to extremely large telescopes," Proc. SPIE 4007, 1088-1099 (2000).
  3. A. Tokovinin, "Seeing Improvement with Ground-Layer Adaptive Optics," Publ. Astron. Soc. Pac. 116, 941-951 (2004).
  4. L. Wang, M. Schock, and G. Chanan, "Atmospheric turbulence profiling with SLODAR using multiple adaptive optics wavefront sensors," Appl. Opt. 47, 1880-1892 (2008).
  5. L. Y. Liu, Y. Q. Yao, J. Vernin, H. S. Wang, J. Yin, and X. Qian, "Multi-instrument characterization of optical turbulence at the Ali observatory," J. Phys.: Conf. Ser. 595, 012019 (2015).
  6. Y. H. Ono, C. M. Correia, D. R. Andersen, O. Lardiere, S. Oya, M. Akiyama, K. Jackson, and C. Bradley, "Statistics of turbulence parameters at Mauna Kea using the multiple wavefront sensor data of RAVEN," Mon. Not. R. Astron. Soc. 465, 4931-4941 (2017).
  7. F. Vidal, E. Gendron, M. Brangier, A. Sevin, G. Rousset, and Z. Hubert, "Tomography reconstruction using the Learn and Apply algorithm," in Proc. 1st AO4ELT conference (Paris, France, Jun. 22-26, 2009), article no. 07001.
  8. L. Gilles and B. L. Ellerbroek, "Real-time turbulence profiling with a pair of laser guide star shack hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes," J. Opt. Soc. Am. A 27, 76-83 (2010).
  9. A. Y. Shikhovtsev, P. G. Kovadlo, A. V. Kiselev, D. Y. Kolobov, V. P. Lukin, I. V. Russkikh, and M. Y. Shikhovtsev, "Modified method to detect the turbulent layers in the atmospheric boundary layer for the large solar vacuum telescope,'' Atmosphere 12, 159 (2021).
  10. R. W. Wilson, "SLODAR: measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor," Mon. Not. R. Astron. Soc. 337, 103-108 (2002).
  11. T. Butterley, R. W. Wilson, and M. Sarazin, "Determination of the profile of atmospheric optical turbulence strength from SLODAR data," Mon. Not. R. Astron. Soc. 369, 835-845 (2006).
  12. M. Goodwin, C. Jenkins, and A. Lambert, "Improved detection of atmospheric turbulence with SLODAR," Opt. Express 15, 14844-14860, (2007).
  13. T. Butterley, R. W. Wilson, M. Sarazin, C. M. Dubbeldam, J. Osborn, and P. Clark, "Characterization of the ground layer of turbulence at Paranal using a robotic SLODAR System," Mon. Not. R. Astron. Soc. 492, 934-949 (2020).
  14. J. Vernin and F. Roddier, "Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation evidence for a multilayer structure of the air turbulence in the upper troposphere," Opt. Soc. Am. 63, 270-273 (1973).
  15. R. Avila, J. L. Aviles, R. Wilson, M. Chun, T. Butterley, and E. Carrasco, "LOLAS: An optical turbulence profiler in the atmospheric boundary layer with extreme altitude-resolution," Mon. Not. R. Astron. Soc. 387, 1511-1516 (2008).
  16. H. W. Shepherd, J. Osborn, R. W. Wilson, T. Butterley, R. Avila, V. S. Dhillon, and T. J. Morris, "Stereo-SCIDAR: Optical turbulence profiling with high sensitivity using a modified SCIDAR instrument," Mon. Not. R. Astron. Soc. 437, 3568-3577 (2014).
  17. A. Tokovinin and V. Kornilov, "Accurate seeing measurements with MASS and DIMM," Mon. Not. R. Astron. Soc. 381, 1179-1189 (2007).
  18. E. Aristidi, A. Ziad, J. Chabe, Y. Fantei-Caujolle, C. Renaud, and C. Giordano, "A generalized differential image motion monitor," Mon. Not. R. Astron. Soc. 486, 915-925 (2019).
  19. Korea Astronomy and Space Science Insititude, "Bohyunsan Optical Astronomy Observatory," (Korea Astronomy and Space Science Institute), https://www.kasi.re.kr/eng/pageView/65 (Accessed Date: Jun. 1, 2023).
  20. H. Lim, M. Choi, E. Park, S. Yu, K. Seong, and J. Park, "The New Korean SLR System and Its Automatic Operation," in Proc. ILRS Technical Workshop (Riga, Latvia, Oct. 2-5, 2017).
  21. J. H. Lee, S. J. Ro, K. Kim, T. Butterley, R. Wilson, Y. Choi, and S. Lee, "Robotic SLODAR development for seeing evaluations at the Bohyunsan Observatory," in Proc. Advanced Maui Optical and Space Surveillance Technologies Conference (Maui, Hawai'i, Sep. 15-18, 2015), poster no. 26.
  22. J. H. Lee, S. Shin, G. N. Park, H. Rhee, and H. Yang, "Atmospheric turbulence simulator for adaptive optics evaluation on an optical test bench," Curr. Opt. Photonics 1, 107-112 (2017).
  23. H.-C. Lim, K.-P. Sung, S.-Y. Yu, M. Choi, E. Park, J.-U. Park, C.-S. Choi, and S. Kim, "Satellite laser ranging system at Geochang Station," J. Astron. Space Sci. 35, 253-261 (2018).
  24. M. Wilkinson, U. Schreiber, I. Prochazka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovniokov, C. Courde, and H. Kunimori, "The next generation of satellite laser ranging systems," J. Geod. 93, 2227-2247 (2019).
  25. Plane wave instrument, "CDK 20 optical tube assembly," (Plan wave product), https://planewave.com/product/cdk20-opticaltube-assembly-f-7-77/ (Accessed Date: Oct. 1, 2023).
  26. Oxford instruments, "iXon life," (Oxford Instruments ANDOR), https://andor.oxinst.com/assets/uploads/products/andor/documents/andor-ixon-life-emccd-specifications.pdf (Accessed Date: Jul. 1, 2023).
  27. S. Thomas, "Optimized centroid computing in a Shack-Hartmann sensor," Proc. SPIE 5490, 1238 (2004).
  28. Korea Meteorological Administration, "Automated synoptic observing system (ASOS) data," (KMA Weather Data Service: Open MET data portal), https://data.kma.go.kr/data/grnd/selectAsosList.do?pgmNo=34 (Accessed Date: Oct. 17, 2023).