DOI QR코드

DOI QR Code

A Fiber Spool's Vibration Sensitivity Optimization Based on Orthogonal Experimental Design

  • Jing Gao (National Time Service Center, Chinese Academy of Sciences) ;
  • Linbo Zhang (National Time Service Center, Chinese Academy of Sciences) ;
  • Dongdong Jiao (National Time Service Center, Chinese Academy of Sciences) ;
  • Guanjun Xu (National Time Service Center, Chinese Academy of Sciences) ;
  • Xue Deng (National Time Service Center, Chinese Academy of Sciences) ;
  • Qi Zang (National Time Service Center, Chinese Academy of Sciences) ;
  • Honglei Yang (Science and Technology on Metrology and Calibration Laboratory, Beijing Institute of Radio Metrology and Measurement) ;
  • Ruifang Dong (National Time Service Center, Chinese Academy of Sciences) ;
  • Tao Liu (National Time Service Center, Chinese Academy of Sciences) ;
  • Shougang Zhang (National Time Service Center, Chinese Academy of Sciences)
  • Received : 2023.05.24
  • Accepted : 2023.11.22
  • Published : 2024.02.25

Abstract

A fiber spool with ultra-low vibration sensitivity has been demonstrated for the ultra-narrow-linewidth fiber-stabilized laser by the multi-object orthogonal experimental design method, which can achieve the optimization object and analysis of influence levels without extensive computation. According to a test of 4 levels and 4 factors, an L16 (44) orthogonal table is established to design orthogonal experiments. The vibration sensitivities along the axial and radial directions and the normalized sums of the vibration sensitivities are determined as single objects and comprehensive objects, respectively. We adopt the range analysis of object values to obtain the influence levels of the four design parameters on the single objects and the comprehensive object. The optimal parameter combinations are determined by both methods of comprehensive balance and evaluation. Based on the corresponding fractional frequency stability of ultra-narrow-linewidth fiber-stabilized lasers, we obtain the final optimal parameter combination A3B1C2D1, which can achieve the fiber spool with vibration sensitivities of 10-12/g magnitude. This work is the first time to use an orthogonal experimental design method to optimize the vibration sensitivities of fiber spools, providing an approach to design the fiber spool with ultra-low vibration sensitivity.

Keywords

Acknowledgement

We would like to acknowledge the contribution to this paper from X. Zhang of Northwestern Polytechnical University.

References

  1. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hansch, T. Udem, R. Holzwarth, and H. Schnatz, "A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place," Science 336, 441-444 (2012).
  2. C. Kennedy, E. Oelker, J. M. Robinson, T. Bothwell, D. Kedar, W. Milner, E. Marti, A. Derevianko, and J. Ye, "Precision metrology meets cosmology: Improved constraints on ultralight dark matter from atom-cavity frequency comparisons," Phys. Rev. Lett. 125, 201302 (2020).
  3. H. Muller, A. Peters, and S. Chu, "A precision measurement of the gravitational red shift by the interference of matter waves," Nature 463, 926-929 (2010).
  4. H. Muller, P. Stanwix, M. Tobar, E. Ivanov, S. Herrmann, A. Senger, and E. Kovalchuk, "Tests of relativity by complementary rotating Michelson-Morley experiments," Phys. Rev. Lett. 99, 050401 (2007).
  5. J. Luo, L. Sheng, H. Duan, Y. Gong, S. Hu, J. Ji, Q. Liu, J. Mei, V. Milyukov, M. Sazhin, C. Shao, V. T. Toth, H. Tu, Y. Wang, H. Yeh, M. Zhan, Y. Zhang, V. Zharov, and Z. Zhou, "TianQin: A space-borne gravitational wave detector," Class. Quantum Grav. 33, 035010 (2016).
  6. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, "Optical clocks and relativity," Science 329, 1630-1633 (2010).
  7. T. Y. Chen, "Use of single-mode optical fiber in the stabilization of laser frequency," Appl. Opt. 28, 2017-2021 (1989).
  8. G. A. Cranch, "Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronics feedback," Opt. Lett. 27, 1114-1116 (2022).
  9. J.-F. Cliche, M. Allard, and M. Tetu, "High-power and ultra-narrow DFB laser: The effect of linewidth reduction systems on coherence length and interferometer noise," Proc. SPIE 6216, 62160C (2006).
  10. B. S. Sheard, M. B. Gray, and D. E. Mcclelland, "High-band-width laser frequency stabilization to a fiber-optic delay line," Appl. Opt. 45, 8491-8499 (2006).
  11. K. Takahashi, M. Ando, and K. Tsubono, "Stabilization of laser intensity and frequency using optical fiber," J. Phys.: Conf. Ser. 122, 012016 (2008).
  12. F. Kefelian, H. Jiang, P. Lemonde, and G. Santarelli, "Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line," Opt. Lett. 34, 914-916 (2009).
  13. H. Jiang, F. Kefelian, P. Lemonde, A. Clairon, and G. Santarelli, "An agile laser with ultralow frequency noise and high sweep linearity," Opt. Express 18, 3284-3297 (2010).
  14. T. G. McRae, S. Ngo, D. A. Shaddock, M. T. L. Hsu, and M. B. Gray, "Frequency stabilization for space-based missions using optical fiber interferometry," Opt. Lett. 38, 278-280 (2013).
  15. J. Dong, Y. Hu, J. Huang, M. Ye, Q. Qu, T. Li, and L. Liu, "Subhertz linewidth laser by locking to a fiber delay line," Appl. Opt. 54, 1152-1156 (2015).
  16. J. Huang, L. Wang, Y. Duan, Y. Huang, M. Ye, L. Liu, and T. Li, "All-fiber-based lasers with 200 mHz linewidth," Chn. Opt. Lett. 17, 071407 (2019).
  17. H. Jiang, "Development of ultra-narrow-linewidth laser sources and long-distance optical link via telecommunication networks," Ph. D. Thesis, France, Universite Paris-Nord-Paris XIII. (2010).
  18. J. Huang, L. Wang, Y. Duan, Y. Huang, M. Ye, L. Liu, and T. Li, "Vibration-insensitive fiber spool for laser stabilization," Chn. Opt. Lett. 17, 081403 (2019).
  19. Y. Huang, D. Hu, M. Ye, Y. Wang, Y. Li, M. Li, Y. Chen, Q. Qu, L. Wang, L. Liu, and T. Li, "All-fiber-based ultra-narrow-linewidth laser with long-term frequency stability of 1.1×10-14," Chn. Opt. Lett. 21, 031404 (2023).
  20. J. Huang, L. Wang, Y. Duan, Y. Huang, L. Liu, and T. Li, "Experimental study on 1/f intrinsic thermal noise in optical fibers," Acta Phys. Sin. 68, 054205 (2019).
  21. G. Taguchi, Introduction to Quality Engineering: Designing Quality into Products and Processes (Asian Productivity Organization, Japan, 1990).
  22. Y.-Q. Hu, J. Dong, J.-C. Huang, T. Li, and L. Liu, "An optical fiber spool for laser stabilization with reduced acceleration sensitivity to 10-12/g," Chn. Phys. B 24,104213 (2015).
  23. H. Renner, "Bending losses of coated single-mode fibers: A simple approach," J. Light. Technol. 10, 544-551 (1992).
  24. L. Faustini and G. Martini, "Bend loss in single-mode fibers," J. Light. Technol. 15, 671-679 (1997).
  25. A. Rogers, Polarization in optical fibers (Artech House Publish, UK, 2008).
  26. L. Yanhui and L. Min, Fiber Optics, 2nd ed. (Tsinghua University Press, China, 2013).
  27. J. Millo, D. V. Magalhaes, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, "Ultrastable lasers based on vibration insensitive cavities," Phys. Rev. A 79, 053829 (2009).
  28. L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, "Vibration-induced elastic deformation of Fabry-Perot cavities," Phys. Rev. A 74, 053801 (2006).
  29. T. Nazarova, F. Riehle, and U. Sterr, "Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser," Appl. Phys. B 83, 531-536 (2006).
  30. S. A. Webster, M. Oxborrow, and P. Gill, "Vibration insensitive optical cavity," Phys. Rev. A 75, 011801 (2007).
  31. B. Argence, E. Prevost, T. Leveque, R. Le Goff, S. Bize, P. Lemonde, and G. Santarelli, "Prototype of an ultra-narrow-linewidth optical cavity for space applications," Opt. Express 20, 25409-25420 (2012).
  32. D. Leibrandt, J. Bergquist, and T. Rosenband, "Cavity-stabilized laser with acceleration sensitivity below 10-12 g-1," Phys. Rev. A 87, 023829 (2013).
  33. D. R. Leibrandt, M. J. Thorpe, M. Notcutt, R. E. Drullinger, T. Rosenband, and J. C. Bergquist, "Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments," Opt. Express 19, 3471-3482 (2011).
  34. S. Hafner, S. Herbers, S. Vogt, C. Lisdat, and U. Sterr, "Transportable interrogation laser system with an instability of mod σy = 3×10-16," Opt. Express 28, 16407-16416 (2020).
  35. Q.-F. Chen, A. Nevsky, M. Cardace, S. Schiller, T. Legero, S. Hafner, A. Uhde, and U. Sterr, "A compact, robust, and transportable ultra-narrow-linewidth laser with a fractional frequency instability of 1 × 10-15," Rev. Sci. Instrum. 85, 113107 (2014).
  36. G. Xu, D. Jiao, L. Chen, L. Zhang, R. Dong, T. Liu, J. Wang, and S. Zhang, "Analysis of vibration sensitivity induced by the elastic deformation of vertical optical reference cavities," IEEE Access 8, 194466-194476 (2020).
  37. S. Webster and P. Gill, "Force-insensitive optical cavity," Opt. Lett. 36, 3572-3574 (2011).
  38. B.-K. Tao and Q.-F. Chen, "A vibration-sensitive-cavity design holds impact of higher than 100 g," Appl. Phys. B 124, 228 (2018).
  39. X. Chen, Y, Jiang, B. Li, H. Yu, H. Jiang, T. Wang, Y. Yao, and L. Ma, "Laser frequency instability of 6 × 10-16 using 10-cm-long cavities on a cubic spacer," Chn. Opt. Lett. 18, 030201 (2020).
  40. J. Cao, S. Wang, J. Yuan, D. Liu, H. Shu, and X. Huang, "Integrated multiple wavelength stabilization on a multi-channel cavity for a transportable optical clock," Opt. Express 28, 11852-11860 (2020).
  41. G. Xu, D. Jiao, L. Chen, L. Zhang, R. Dong, T. Liu, and J. Wang, "Vibration modes of a transportable optical cavity," Opt. Express 29, 24264-24277 (2021).
  42. M. A. Hafiz, P. Ablewski, A. A. Masoudi, H. A. Martinez, P. Balling, G. Barwood, E. Benkler, M. Bober, M. Borkowski,W. Bowden, R. Ciurylo, H. Cybulski, A. Didier, M. Dolezal, S. Dorscher, S. Falke, R. M. Godun, R. Hamid, Ian R. Hill, R. Hobson, N. Huntemann, Y. L. Coq, R. L. Targat, T. Legero,T. Lindvall, C. Lisdat, J. Lodewyck, H. S. Margolis,T. E. Mehlstaubler, E. Peik, L. Pelzer, M. Pizzocaro, B. Rauf,A. Rolland, N. Scharnhorst, M. Schioppo, P. O. Schmidt, R. Schwarz, N. Spethmann, U. Sterr, C. Tamm, J. W. Thomsen, A. Vianello, and M. Zawada, "Guidelines for developing optical clocks with 10-18 fractional frequency uncertainty," arXiv:1906.11495 (2019).
  43. D. Jiao, "Research on key technologies of engineering ultrastable laser in communication band and its application," Ph. D. Dissertations, University of Chinese Academy of Sciences, China (2020).
  44. D. B. Newell, S. J. Richman, P. G. Nelson, R. T. Stebbins, P. L. Bender, J. E. Faller, and J. Mason, "An ultra-low-noise, low-frequency, six degrees of freedom active vibration isolator," Rev. Sci. Instrum. 68, 3211-3219 (1997).
  45. M. D. Alvarez, "Optical cavities for optical atomic clocks, atom interferometry and gravitational-wave detection," Ph. D. Thesis, University of Birmingham, UK (2018)