DOI QR코드

DOI QR Code

3.2-kW 9.7-GHz Polarization-maintaining Narrow-linewidth All-fiber Amplifier

  • Hang Liu (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Yujun Feng (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Xiaobo Yang (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Yao Wang (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Hongming Yu (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Jue Wang (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Wanjing Peng (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Yanshan Wang (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Yinhong Sun (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Yi Ma (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Qingsong Gao (Institute of Applied Electronics, China Academy of Engineering Physics) ;
  • Chun Tang (Institute of Applied Electronics, China Academy of Engineering Physics)
  • Received : 2023.07.13
  • Accepted : 2023.11.30
  • Published : 2024.02.25

Abstract

We present a Yb-doped narrow-linewidth polarization-maintaining all-fiber amplifier that achieves a high mode-instability (MI) threshold, high output power, and 9.7-GHz spectral linewidth. Six wavelength-multiplexed laser diodes are used to pump this amplifier. First, we construct a high-power fiber amplifier based on a master oscillator-power amplifier configuration for experiments. Subsequently, we examine the MI threshold by individually pumping the amplifier with wavelengths of 976, 974, 981, 974, and 981 nm respectively. The experimental results demonstrate that the amplifier exhibits a high MI threshold (>3.5 kW) when pumped with a combination of wavelengths at 974 and 981 nm. Afterward, we inject an optimized phase-modulated seed with a nearly flat-top spectrum into this amplifier. Ultimately, laser output of 3.2 kW and 9.7 GHz are obtained.

Keywords

Acknowledgement

Innovation Development Fund of CAEP (C-2021-CX20210047).

References

  1. J. Ballato, A. Flores, T. Ehrehreich, R. Holten, B. Anderson, and I. Dajani, "Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light," Proc. SPIE 9728, 97281Y (2016).
  2. P. Ma, H. Chang, Y. Ma, R. Su, and J. Zhou, "7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array," Opt. Laser Technol. 140, 107016 (2021).
  3. Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, and B. He, "10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation," Opt. Express 24, 12063-12071 (2016).
  4. F. Chen, J. Ma, C. Wei, R. Zhu, W. Zhou, Q. Yuan, S. Pan, J. Zhang, Y. Wen, and J. Dou, "10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters," Opt. Express 25, 32783-327D91 (2017).
  5. G. W. Marcy, N. K. Tellis, and E. H. Wishnow, "Laser communication with Proxima and Alpha Centauri using the solar gravitational lens," Mon. Not. R. Astron. Soc. 509, 3798-3814 (2022).
  6. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers," Opt. Express 19, 13218-13224 (2011).
  7. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tunnermann, "Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers," Opt. Express 20, 15710-15722 (2012).
  8. G. P. Agrawal, "Nonlinear fiber optics," in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sorensen, A. C. Scott, Eds. (Springer Berlin, Germany, 2000), pp. 195-211.
  9. K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, "Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers," Proc. SPIE 8961, 89611R (2014).
  10. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength," J. Opt. 17, 045504 (2015).
  11. W. Lai, P. Ma, W. Liu, L. Huang, C. Li, Y. Ma, and P. Zhou, "550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber," Opt. Express 28, 20908-20919 (2020).
  12. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735-17744 (2014).
  13. M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, and B. He, "1.27 kW, 2.2 GHz pseudorandom binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap," Sci. Rep. 10, 629 (2020).
  14. Y. Wang, Y. Sun, W. Peng, Y. Feng, J. Wang, Y. Ma, Q. Gao, R. Zhu, and C. Tang, "3.25 kW all-fiberized and polarizationmaintained Yb-doped amplifier with a 20 GHz linewidth and near-diffraction-limited beam quality," Appl. Opt. 60, 6331-6336 (2021).
  15. Y. Wang, Y. Sun, W. Peng, J. Wang, Y. Feng, Y. Ma, Q. Gao, R. Zhu, and C. Tang, "Effect of the recurring random signal waveform on SBS and self-pulsing in a phase-modulated narrow-linewidth linearly polarized fiber amplifier," Opt. Commun. 523, 128683 (2022).
  16. P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, "1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality," Opt. Express 24, 4187-4195 (2016).
  17. C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, "Diodepumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier," Opt. Lett. 41, 5202-5205 (2016).
  18. Y. Wang, W. Ke, W. Peng, Z. Chang, Y. Feng, Y. Sun, Q. Gao, Y. Ma, R. Zhu, and C. Tang, "3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure," Laser Phys. Lett. 17, 075101 (2020).
  19. Y. Wang, W. Peng, W. Ke, Y. Sun, Z. Chang, Y. Ma, R. Zhu, and C. Tang, "Influence of seed instability on the stimulated Raman scattering of high power narrow linewidth fiber amplifier," Opt. Quantum Electron. 52, 193 (2020).
  20. D. Meng, P. Ma, X. Wang, Y. Ma, R. Su, P. Zhou, and L. Yang, "Kilowatt-level, high brightness, narrow-linewidth PM fiber amplifiers based on laser gain competition," Proc. SPIE 11023, 110233B (2019).
  21. Z.-M. Huang, Q. Shu, R.-M. Tao, Q.-H. Chu, Y. Luo, D.-L. Yan, X. Feng, Y. Liu, W.-J. Wu, H.-Y. Zhang, H.-H. Lin, J.-J. Wang, and F. Jing, ">5kW Record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier," IEEE Photonics Technol. Lett. 33, 1181-1184 (2021).
  22. Y. Wang, W. Peng, H. Liu, X. Yang, H. Yu, Y. Wang, J. Wang, Y. Feng, Y. Sun, Y. Ma, Q. Gao, and C. Tang, "Linearly polarized fiber amplifier with narrow linewidth of 5 kW exhibiting a record output power and near-diffraction-limited beam quality," Opt. Lett. 48, 2909-2912 (2023).
  23. N. Platonov, R. Yagodkin, J. De La Cruz, A. Yusim, and V. Gapontsev, "1.5 kW linear polarized on PM fiber and 2 kW on non-PM fiber narrow linewidth CW diffraction-limited fiber amplifier," Proc. SPIE 10085, 100850M (2017).
  24. Z. Chang, Y. Wang, Y. Sun, W. Peng, W. Ke, Y. Ma, R. Zhu, and C. Tang, "1.5 kW polarization-maintained Yb-doped amplifier with 13 GHz linewidth by suppressing the self-pulsing and stimulated Brillouin scattering," Appl. Opt. 58, 6419-6425 (2019).
  25. Q. Chu, Q. Shu, C. Guo, H. Zhang, R. Tao, H. Lin, and J. Wang, "3 kW polarization maintained fiber lasers with 10.6 GHz linewidth and near diffraction limited beam quality," in Proc. Advanced Fiber Laser Conference-AFL 2022 (Changsha, China, Nov. 11-13, 2022), pp. 606-610.
  26. Y. Wang, Y. Feng, X. Wang, H. Yan, J. Peng, W. Peng, Y. Sun, Y. Ma, and C. Tang, "6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control," Appl. Opt. 56, 2760-2765 (2017).
  27. C. Jun, M. Jung, W. Shin, B.-A. Yu, Y. S. Yoon, Y. Park, and K. Choi, "818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarizationmaintained all-fiber configuration," Laser Phys. Lett. 16, 015102 (2018).
  28. D. Meng, W. Lai, X. He, P. Ma, R. Su, P. Zhou, and L. Yang, "Kilowatt-level, mode-instability-free, all-fiber and polarization-maintained amplifier with spectral linewidth of 1.8 GHz," Laser Phys. 29, 035103 (2019).
  29. W. Lai, P. Ma, J. Song, S. Ren, W. Liu, and P. Zhou, "Kilowatt-level, narrow linewidth, polarization-maintained all-fiber amplifiers based on multi-phase coded signal modulation and laser gain competition," Results Phys. 31, 105050 (2021).
  30. D. J. Kim, J. Koo, S. W. Jun, H. Jeong, H. Lee, J. H. Lee, and M. Jo, "A 2 kW, 8 GHz-linewidth Yb-doped polarization-maintained fiber laser with quasi-flat-top pseudo random binary sequence phase modulation for SBS suppression," Nanomaterials 13, 1329 (2023).
  31. B. Anderson, A. Flores, R. Holten, and I. Dajani, "Comparison of phase modulation schemes for coherently combined fiber amplifiers," Opt. Express 23, 27046-27060 (2015).
  32. Y. Wang, Y. Feng, Y. Ma, Z. Chang, W. Peng, Y. Sun, Q. Gao, R. Zhu, and C. Tang, "2.5 kW narrow linewidth linearly polarized all-fiber MOPA with cascaded phase-modulation to suppress SBS induced self-pulsing," IEEE Photonics J. 12, 1502815 (2020).