DOI QR코드

DOI QR Code

4H-SiC와 산화막 계면에 대한 혼합된 일산화질소 가스를 이용한 산화 후속 열처리 효과

Effect of High-Temperature Post-Oxidation Annealing in Diluted Nitric Oxide Gas on the SiO2/4H-SiC Interface

  • 김인규 (경상국립대학교 반도체 및 시스템 공학과) ;
  • 문정현 (한국전기연구원 전력반도체연구단 차세대반도체연구센터)
  • In kyu Kim (Department of Semiconductor Engineering, Gyeongsang National University) ;
  • Jeong Hyun Moon (Advanced Semiconductor Research Center, Power Semiconductor Research Division, Korea Electrotechnology Research Institute)
  • 투고 : 2023.11.16
  • 심사 : 2023.11.29
  • 발행 : 2024.01.01

초록

4H-SiC power metal-oxide-semiconductor field effect transistors (MOSFETs) have been developed to achieve lower specific-on-resistance (Ron,sp), and the gate oxides have been thermally grown. The poor channel mobility resulting from the high interface trap density (Dit) at the SiO2/4H-SiC interface significantly affects the higher switching loss of the power device. Therefore, the development of novel fabrication processes to enhance the quality of the SiO2/4H-SiC interface is required. In this paper, NO post-oxidation annealing (POA) by using the conditions of N2 diluted NO at a high temperature (1,300℃) is proposed to reduce the high interface trap density resulting from thermal oxidation. The NO POA is carried out in various NO ambient (0, 10, 50, and 100% NO mixed with 100, 90, 50, and 0% of high purity N2 gas to achieve the optimized condition while maintaining a high temperature (1,300℃). To confirm the optimized condition of the NO POA, measuring capacitance-voltage (C-V) and current-voltage (I-V), and time-of-flight secondary-ion mass spectrometry (ToF-SIMS) are employed. It is confirmed that the POA condition of 50% NO at 1,300℃ facilitates the equilibrium state of both the oxidation and nitridation at the SiO2/4H-SiC interface, thereby reducing the Dit.

키워드

과제정보

이 연구는 2023년도 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회의 지원을 받아 수행된 한국전기연구원 기본사업임(No.23A01077).

참고문헌

  1. J. H. Moon, W. Bahng, I. H. Kang, S. C. Kim, M. G. Na, and N. K. Kim, J. Korean Phys. Soc., 64, 1363 (2014). doi: https://doi.org/10.3938/jkps.64.1363
  2. J. A. Cooper, M. R. Melloch, J. M. Woodall, J. Spitz, K. J. Schoen, and J. Henning, Mater. Sci. Forum, 264, 895 (1998). doi: https://doi.org/10.4028/www.scientific.net/MSF.264-268.895
  3. B. J. Baliga, Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design, and Applications (Elsevier, United Kingdom, 2019) p. 0. [ISBN: 9780081023068]
  4. C. Langpoklakpam, A. C. Liu, K. H. Chu, L. H. Hsu, W. C. Lee, S. C. Chen, C. W. Sun, M. H. Shih, K. Y. Lee, and H. C. Kuo, Crystals, 12, 245 (2022). doi: https://doi.org/10.3390/cryst12020245
  5. F. Roccaforte, P. Fiorenza, G. Greco, R. L. Nigro, F. Giannazzo, A. Patti, and M. Saggio, Phys. Status Solidi A, 211, 2063 (2014).  doi: https://doi.org/10.1002/pssa.201300558
  6. V. V. Afanas'ev, F. Ciobanu, S. Dimitrijev, G. Pensl, and A. Stesmans, J. Phys.: Condens. Matter, 16, S1839 (2004). doi: https://doi.org/10.1088/0953-8984/16/17/019
  7. P. Fiorenza, F. Iucolano, G. Nicotra, C. Bongiorno, I. Deretzis, A. La Magna, F. Giannazzo, M. Saggio, C. Spinella, and F. Roccaforte, Nanotechnology, 29, 395702 (2018). doi: https://doi.org/10.1088/1361-6528/aad129
  8. K. Y. Cheong, S, Dimitrijev, J. Han, and H. B. Harrison, J. Appl. Phys., 93, 5682 (2003). doi: https://doi.org/10.1063/1.1555696
  9. J. H. Moon, J. H. Yim, H. S. Seo, D. H. Lee, H. K. Song, J. Heo, H. J. Kim, K. Y. Cheong, W. Bahng, and N. K. Kim, J. Electrochem. Soc., 157, H196 (2010). doi: https://doi.org/10.1149/1.3267508
  10. Y. Jia, H. Lv, Y. Niu, L. Li, Q. Song, X. Tang, C. Li, Y. Zhao, L. Xiao, and L. Wang, Chin. Phys. B, 25, 097101 (2016). doi: https://doi.org/10.1088/1674-1056/25/9/097101
  11. Z. Peng, Y. Wang, H. Shen, C. Li, J. Wu, Y. Bai, K. Liu, and X. Liu, Microelectron. Reliab., 58, 192 (2016). doi: https://doi.org/10.1016/j.microrel.2015.11.022
  12. K. Moges, M. Sometani, T. Hosoi, T. Shimura, S. Harada, and H. Watanabe, Appl. Phys. Express, 11, 101303 (2018). doi: https://doi.org/10.7567/APEX.11.101303
  13. A. Regoutz, G. Pobegen, and T. Aichinger, J. Mater. Chem. C, 6, 12079 (2018). doi: https://doi.org/10.1039/C8TC02935K
  14. H. Y. Xu, C. P. Wan, and J. P. Ao, Mater. Sci. Forum, 954, 104 (2019). doi: https://doi.org/10.4028/www.scientific.net/MSF.954.104
  15. S. Lee, S. Kim, H. J. Kang, H. W. Kim, O. Seok, J. H. Moon, W. Bahng, H. J. Kim, and M. W. Ha, Phys. Scr., 94, 125811 (2019). doi: https://doi.org/10.1088/1402-4896/ab432c
  16. T. H. Kil and K. Kita, ECS Trans., 98, 47 (2020). doi: https://doi.org/10.1149/09803.0047ecst
  17. J. H. Moon, I. H. Kang, H. W. Kim, O. Seok, W. Bahng, and M. W. Ha, Curr. Appl. Phys., 20, 1386 (2020). doi: https://doi.org/10.1016/j.cap.2020.09.003
  18. T. Kimoto and H. Watanabe, Appl. Phys. Express, 13, 120101 (2020). doi: https://doi.org/10.35848/1882-0786/abc787
  19. H. Yoshioka, T. Nakamura, and T. Kimoto, J. Appl. Phys., 112, 024520 (2012). doi: https://doi.org/10.1063/1.4740068
  20. A. Chanthaphan, T. Hosoi, T. Shimura, and H. Watanabe, AIP Adv., 5, 097134 (2015). doi: https://doi.org/10.1063/1.4930980
  21. Z. W. Shen, F. Zhang, S. Dimitrijev, J. S. Han, G. G. Yan, Z. X. Wen, W. S. Zhao, L. Wang, X. F. Liu, G. S. Sun, and Y. P. Zeng, Chin. Phys. B, 26, 107101 (2017). doi: https://doi.org/10.1088/1674-1056/26/10/107101
  22. J. H. Moon, H. K. Song, J. H. Yim, H. S. Seo, M. S. Oh, J. H. Lee, H. J. Kim, K. Y. Cheong, W. Bahng, and N. K. Kim, Electrochem. Solid-State Lett., 10, H327 (2007). doi: https://doi.org/10.1149/1.2773965
  23. H. Wong and V. A. Gritsenko, Microelectron. Reliab., 42, 597 (2002). doi: https://doi.org/10.1016/S0026-2714(02)00005-7
  24. P. Fiorenza, F. Giannazzo, and F. Roccaforte, Energies, 12, 2310 (2019). doi: https://doi.org/10.3390/en12122310
  25. D. K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, New York, 1998) p. 0. doi: https://doi.org/10.1002/0471749095
  26. K. Y. Cheong, J. H. Moon, H. J. Kim, W. Bahng, and N. K. Kim, Thin Solid Films, 518, 3255 (2010). doi: https://doi.org/10.1016/j.tsf.2009.11.003
  27. K. Y. Cheong, W. Bahng, and N. K. Kim, Appl. Phys. Lett., 90, 012120 (2007). doi: https://doi.org/10.1063/1.2430308
  28. K. Y. Cheong, J. H. Moon, H. J. Kim, W. Bahng, and N. K. Kim, J. Appl. Phys., 103, 084113 (2008). doi: https://doi.org/10.1063/1.2908870