DOI QR코드

DOI QR Code

고효율 회전형 정전 나노 발전기의 기구학적 설계

Kinematic Design of High-Efficient Rotational Triboelectric Nanogenerator

  • 이지현 (성균관대학교 기계공학부) ;
  • 나성민 (성균관대학교 기계공학부) ;
  • 최덕현 (성균관대학교 기계공학부)
  • Jihyun Lee (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Seongmin Na (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Dukhyun Choi (School of Mechanical Engineering, Sungkyunkwan University)
  • 투고 : 2023.10.04
  • 심사 : 2023.10.20
  • 발행 : 2024.01.01

초록

A triboelectric nanogenerator is a promising energy harvester operated by the combined mechanism of electrostatic induction and contact electrification. It has attracting attention as eco-friendly and sustainable energy generators by harvesting wasting mechanical energies. However, the power generated in the natural environment is accompanied by low frequencies, so that the output power under such input conditions is normally insufficient amount for a variety of industrial applications. In this study, we introduce a non-contact rotational triboelectric nanogenerator using pedaling and gear systems (called by P-TENG), which has a mechanism that produces high power by using rack gear and pinion gear when a large force by a pedal is given. We design the system can rotate the shaft to which the rotor is connected through the conversion of vertical motion to rotational motion between the rack gear and the pinion gear. Furthermore, the system controls the one directional rotation due to the engagement rotation of the two pinion gears and the one-way needle roller bearing. The TENG with a 2 mm gap between the rotor and the stator produces about the power of 200 ㎼ and turns on 82 LEDs under the condition of 800 rpm. We expect that P-TENG can be used in a variety of applications such as operating portable electronics or sterilizing contaminated water.

키워드

과제정보

이 연구는 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20013794, 복합재료 및 동시설계 산업기술거점센터).

참고문헌

  1. Department of Energy Science and Diplomacy, Foreign Affairs, https://www.mofa.go.kr/www/wpge/m_4000/contents.do
  2. Q. Jiang, Y. Jie, Y. Han, C. Gao, H. Zhu, M. Willander, X. Zhang, and X. Cao, Nano Energy, 18, 81 (2015). doi: https://doi.org/10.1016/j.nanoen.2015.09.017
  3. Y. Jung, J. Yu, H. J. Hwang, D. Bhatia, K. B. Chung, and D. Choi, Nano Energy, 71, 104615 (2020). doi: https://doi.org/10.1016/j.nanoen.2020.104615
  4. K. D. Pham, D. Bhatia, N. D. Huynh, H. Kim, J. M. Baik, Z. H. Lin, and D. Choi, Nano Energy, 89, 106350 (2021). doi: https://doi.org/10.1016/j.nanoen.2021.106350
  5. K. W. Han, J. N. Kim, A. Rajabi-Abhari, V. T. Bui, J. S. Kim, D. Choi, and I. K. Oh, Adv. Energy Mater., 11, 2002929 (2020). doi: https://doi.org/10.1002/aenm.202002929
  6. N. D. Huynh and D. Choi, Nanoenergy Adv., 2, 29 (2022). doi: https://doi.org/10.3390/nanoenergyadv2010002
  7. B. Cao, P. Wang, P. Rui, X. Wei, Z. Wang, Y. Yang, X. Tu, C. Chen, Z. Wang, Z. Yang, T. Jiang, J. Cheng, and Z. L. Wang, Adv. Energy Mater., 12, 2202627 (2022). doi: https://doi.org/10.1002/aenm.202202627
  8. N. D. Huynh, Z. H. Lin, and D. Choi, Nano Energy, 85, 105983 (2021). doi: https://doi.org/10.1016/j.nanoen.2021.105983
  9. W. Kim, H. J. Hwang, D. Bhatia, Y. Lee, J. M. Baik, and D. Choi, Nano Energy, 21, 19 (2016). doi: https://doi.org/10.1016/j.nanoen.2015.12.017
  10. W. Kim, K. D. Pham, and D. Choi, Nano Energy, 106, 108088 (2023). doi: https://doi.org/10.1016/j.nanoen.2022.108088
  11. J. Yu, W. Kim, S. Oh, D. Bhatia, J. G. Kim, and D. Choi, Int. J. Precis. Eng. Manuf. Green Technol., 10, 409 (2023). doi: https://doi.org/10.1007/s40684-022-00442-y
  12. W. Ding, J. Zhou, J. Cheng, Z. Wang, H. Guo, C. Wu, S. Xu, Z. Wu, X. Xie, and Z. L. Wang, Adv. Energy Mater., 9, 1901320 (2019). doi: https://doi.org/10.1002/aenm.201901320
  13. A. Li, H. H. Ho, S. R. Barman, S. Lee, F. Gao, and Z. H. Lin, Nano Energy, 93, 106826 (2022). doi: https://doi.org/10.1016/j.nanoen.2021.106826
  14. Z. Y. Huo, D. M. Lee, J. M. Jeong, Y. J. Kim, J. Kim, I. Y. Suh, P. Xiong, and S. W. Kim, Adv. Energy Mater., 12, 2103680 (2022). doi: https://doi.org/10.1002/aenm.202103680
  15. D. Choi, Y. Lee, Z. H. Lin, S. Cho, M. Kim, C. K. Ao, S. Soh, C. Sohn, C. K. Jeong, J. Lee, M. Lee, S. Lee, J. Ryu, P. Parashar, Y. Cho, J. Ahn, I. D. Kim, F. Jiang, P. S. Lee, G. Khandelwal, S. J. Kim, H. S. Kim, H. C. Song, M. Kim, J. Nah, W. Kim, H. G. Menge, Y. T. Park, W. Xu, J. Hao, H. Park, J. H. Lee, D. M. Lee, S. W. Kim, J. Y. Park, H. Zhang, Y. Zi, R. Guo, J. Cheng, Z. Yang, Y. Xie, S. Lee, J. Chung, I. K. Oh, J. S. Kim, T. Cheng, Q. Gao, G. Cheng, G. Gu, M. Shim, J. Jung, C. Yun, C. Zhang, G. Liu, Y. Chen, S. Kim, X. Chen, J. Hu, X. Pu, Z. H. Guo, X. Wang, J. Chen, X. Xiao, X. Xie, M. Jarin, H. Zhang, Y. C. Lai, T. He, H. Kim, I. Park, J. Ahn, N. D. Huynh, Y. Yang, Z. L. Wang, J. M. Baik, and D. Choi, ACS Nano, 17, 11087 (2023). doi: https://doi.org/10.1021/acsnano.2c12458