DOI QR코드

DOI QR Code

Cobalt Catalyst Supported on Nitrogen-Doped Metal Organic Frameworks (MOF)-Derived Carbon Electrodes for Lithium-Sulfur Cells

  • Yongwoo Lee (School of Chemical Engineering, Pusan National University) ;
  • Yongju Jung (Department of Chemical & Biological Engineering, Korea University of Technology and Education) ;
  • Seok Kim (School of Chemical Engineering, Pusan National University)
  • Received : 2024.09.25
  • Accepted : 2024.10.25
  • Published : 2024.12.10

Abstract

Lithium-sulfur batteries are recognized as potential next-generation energy storage devices due to their superior energy density and affordability. However, the dissolution of lithium polysulfides (LiPS) in the electrolyte induces a shuttle phenomenon, depleting active materials and shortening battery lifespan. This study examines the use of Co single-atom (CoSA) catalysts supported on an N-doped carbon matrix to mitigate the polysulfide shuttle effect. By varying the concentrations of Zn2+ and Co2+, the synthesis of ZnCo-Zeolitic imidazolate framework (ZIF) was optimized, enabling the uniform dispersion of Co single atoms within an N-doped carbon matrix. The Co2SA-CN@S electrode, derived from ZnCo-ZIF with an optimal Zn2+ to Co2+ concentration ratio of 8:2, achieved a specific capacity of 1113 mAh g-1 at 0.1 C and demonstrated excellent rate performance of 647 mAh g-1 at 1.0 C. This study confirms that the concentrations of Zn2+ and Co2+ during the synthesis of ZnCo-ZIF significantly influence Co particle aggregation and the formation of Co single atoms after heat treatment. The N-doped metal-organic framework-derived carbon, supported by single cobalt atoms, referred to as Co single-atom carbon nanomaterials (CoSA-CN), synthesized with optimal reactant concentrations, effectively enhances polysulfide conversion during redox reactions, minimizes LiPS migration, and suppresses the shuttle effect. This research reveals that controlling metal ion concentrations (Co2+ and Zn2+) is an effective strategy to limit an aggregation of metal catalysts, thereby producing single atoms more efficiently and ensuring their uniform distribution within the carbon matrix.

Keywords

Acknowledgement

This work was supported by a two-year research grant from Pusan National University.

References

  1. Y. Jung and S. Kim, New approaches to improve cycle life characteristics of lithium-sulfur cells, Electrochem. Commun., 9, 249-254
  2. A. Zeng, W. Chen, K. D. Rasmussen, X. Zhu, M. Lundhaug, D. B. Müller, J. Tan, J. K. Keiding, L. Liu, and T. Dai, Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages, Nat. Commun., 13, 1341 (2022).
  3. X. Ji and L. F. Nazar, Advances in Li–S batteries, J. Mater. Chem., 20, 9821-9826 (2010). https://doi.org/10.1039/b925751a
  4. A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, and Y.-S. Su, Rechargeable lithium–sulfur batteries, Chem. Rev., 114, 11751-11787 (2014). https://doi.org/10.1021/cr500062v
  5. M. Lao, G. Zhao, X. Li, Y. Chen, S. X. Dou, and W. Sun, Homogeneous sulfur–cobalt sulfide nanocomposites as lithium–sulfur battery cathodes with enhanced reaction kinetics, ACS Appl. Energy Mater., 1, 167-172 (2017).
  6. Y. Tsao, M. Lee, E. C. Miller, G. Gao, J. Park, S. Chen, T. Katsumata, H. Tran, L.-W. Wang, and M. F. Toney, Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries, Joule, 3, 872-884 (2019). https://doi.org/10.1016/j.joule.2018.12.018
  7. J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M. H. Engelhard, J.-G. Zhang, and J. Liu, Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries, Nano Lett., 14, 2345-2352 (2014). https://doi.org/10.1021/nl404721h
  8. S. A. Ganiyu and S. A. Lateef, Review of adsorptive desulfurization process: Overview of the non-carbonaceous materials, mechanism and synthesis strategies, Fuel, 294, 120273 (2021).
  9. Y.-S. Su, Y. Fu, T. Cochell, and A. Manthiram, A strategic approach to recharging lithium-sulphur batteries for long cycle life, Nat. Commun., 4, 2985 (2013).
  10. R. Fang, S. Zhao, Z. Sun, D. W. Wang, H. M. Cheng, F. Li, More reliable lithium‐sulfur batteries: Status, solutions and prospects, Adv. Mater., 29, 1606823 (2017).
  11. M. Liu, F. Ye, W. Li, H. Li, and Y. Zhang, Chemical routes toward long-lasting lithium/sulfur cells, Nano Res., 9, 94-116 (2016). https://doi.org/10.1007/s12274-016-1027-8
  12. S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo, and L.-J. Wan, Smaller sulfur molecules promise better lithium–sulfur batteries, J. Am. Chem. Soc., 134, 18510-18513 (2012). https://doi.org/10.1021/ja308170k
  13. Z. Zhang, L. L. Kong, S. Liu, G. R. Li, and X. P. Gao, A high‐efficiency sulfur/carbon composite based on 3D graphene nanosheet@ carbon nanotube matrix as cathode for lithium–sulfur battery, Adv. Energy Mater., 7, 1602543 (2017).
  14. L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, and Y. Zhang, Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells, J. Am. Chem. Soc., 133, 18522-18525 (2011). https://doi.org/10.1021/ja206955k
  15. H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability, Nano Lett., 11, 2644-2647 (2011). https://doi.org/10.1021/nl200658a
  16. X. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries, Nat. Mater., 8, 500-506 (2009). https://doi.org/10.1038/nmat2460
  17. B. Zhang, X. Qin, G. Li, and X. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy Environ. Sci., 3, 1531-1537 (2010). https://doi.org/10.1039/c002639e
  18. J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, and L. F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries, Angew. Chem. Int. Ed., 15, 3591-3595 (2012).
  19. G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I.R. Gentle, F. Li, and H.-M. Cheng, Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries, ACS Nano, 7, 5367-5375 (2013). https://doi.org/10.1021/nn401228t
  20. N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, and L. A. Archer, Porous hollow carbon@ sulfur composites for high‐power lithium–sulfur batteries, Angew. Chem. Int. Ed., 50, 5904 (2011).
  21. Y. Jiang, H. Liu, X. Tan, L. Guo, J. Zhang, S. Liu, Y. Guo, J. Zhang, H. Wang, and W. Chu, Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries, ACS Appl. Mater. Interfaces, 9, 25239-25249 (2017). https://doi.org/10.1021/acsami.7b04432
  22. Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, and X. Sun, Metal organic frameworks for energy storage and conversion, Energy Storage Mater., 2, 35-62 (2016). https://doi.org/10.1016/j.ensm.2015.11.005
  23. H. Al Salem, G. Babu, C. V. Rao, and L. M. R. Arava, Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries, J. Am. Chem. Soc., 137, 11542-11545 (2015). https://doi.org/10.1021/jacs.5b04472
  24. H. Zhang, L. Wang, Q. Li, L. Ma, T. Wu, Y. Ma, J. Wang, C. Du, G. Yin, and P. Zuo, Cobalt nanoparticle-encapsulated carbon nanowire arrays: Enabling the fast redox reaction kinetics of lithium-sulfur batteries, Carbon, 140, 385-393 (2018). https://doi.org/10.1016/j.carbon.2018.09.012
  25. Y.-J. Li, J.-M. Fan, M.-S. Zheng, and Q.-F. Dong, A novel synergistic composite with multi-functional effects for high-performance Li–S batteries, Energy Environ. Sci., 9, 1998-2004 (2016). https://doi.org/10.1039/C6EE00104A
  26. G. Babu, K. Ababtain, K. S. Ng, and L. M. R. Arava, Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration, Sci. Rep., 5, 8763 (2015).
  27. S. Li, X. Chen, F. Hu, R. Zeng, Y. Huang, L. Yuan, and J. Xie, Cobalt-embedded carbon nanofiber as electrocatalyst for polysulfide redox reaction in lithium sulfur batteries, Electrochim. Acta, 304, 11-19 (2019). https://doi.org/10.1016/j.electacta.2019.02.087
  28. B.-W. Zhang, T. Sheng, Y.-D. Liu, Y.-X. Wang, L. Zhang, W.-H. Lai, L. Wang, J. Yang, Q.-F. Gu, and S.-L. Chou, Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries, Nat. Commun., 9, 4082 (2018).
  29. Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie, A. Hu, W. Yan, X. Kong, X. Wu, and H. Ji, Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries, J. Am. Chem. Soc., 141, 3977-3985 (2019). https://doi.org/10.1021/jacs.8b12973
  30. C. Wang, H. Song, C. Yu, Z. Ullah, Z. Guan, R. Chu, Y. Zhang, L. Zhao, Q. Li, and L. Liu, Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries, J. Mater. Chem. A, 8, 3421-3430 (2020). https://doi.org/10.1039/C9TA11680J
  31. Y. Cao, F. Lei, Y. Li, S. Qiu, Y. Wang, W. Zhang, and Z. Zhang, A MOF-derived carbon host associated with Fe and Co single atoms for Li–Se batteries, J. Mater. Chem. A, 9, 16196-16207 (2021). https://doi.org/10.1039/D1TA04529F
  32. A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O'keeffe, and O. M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res., 43, 58-67 (2009).
  33. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture, Science, 319, 939-943 (2008). https://doi.org/10.1126/science.1152516
  34. P. Song, S. Zheng, Z. Ullah, Z. Yang, P. Zhu, A. He, C. Wang, and Q. Li, Synergistic effects of FeCo bimetallic single-atom catalysts: Accelerating the redox conversion of polysulfides and inhibiting the growth of lithium dendrites in lithium–sulfur batteries, ACS Appl. Energy Mater., 6, 4671-4682 (2023). https://doi.org/10.1021/acsaem.2c04118
  35. Y. Li, G. Chen, J. Mou, Y. Liu, S. Xue, T. Tan, W. Zhong, Q. Deng, T. Li, and J. Hu, Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries, Energy Storage Mater., 28, 196-204 (2020). https://doi.org/10.1016/j.ensm.2020.03.008
  36. J. Zhou, X. Yu, X. Fan, X. Wang, H. Li, Y. Zhang, W. Li, J. Zheng, B. Wang, and X. Li, The impact of the particle size of a metal–organic framework for sulfur storage in Li–S batteries, J. Mater. Chem. A, 3, 8272-8275 (2015). https://doi.org/10.1039/C5TA00524H
  37. J. Y. Hong, Y. Jung, D.-W. Park, S. Chung, and S. Kim, Synthesis and electrochemical analysis of electrode prepared from zeolitic imidazolate framework (ZIF)-67/graphene composite for lithium sulfur cells, Electrochim. Acta, 259, 1021-1029 (2018). https://doi.org/10.1016/j.electacta.2017.11.016
  38. B. H. Park, Y. Jung, and S. Kim, Particle size control influence on the electrochemical properties of sulfur deposited on metal organic frameworks host electrodes, J. Inorg. Organomet. Polym. Mater., 31, 1931-1938 (2021). https://doi.org/10.1007/s10904-021-01901-w
  39. X. Feng and M. A. Carreon, Kinetics of transformation on ZIF-67 crystals, J. Cryst. Growth, 418, 158-162 (2015). https://doi.org/10.1016/j.jcrysgro.2015.02.064
  40. S. Qiao, D. Lei, Q. Wang, X. Shi, Q. Zhang, C. Huang, A. Liu, G. He, and F. Zhang, Etch-evaporation enabled defect engineering to prepare high-loading Mn single atom catalyst for Li-S battery applications, Chem. Eng. J., 442, 136258 (2022).
  41. Z. Geng, Y. Cao, W. Chen, X. Kong, Y. Liu, T. Yao, and Y. Lin, Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction, Appl. Catal. B: Environ., 240, 234-240 (2019). https://doi.org/10.1016/j.apcatb.2018.08.075
  42. M. Alagiri, C. Muthamizhchelvan, and S. B. A. Hamid, Synthesis of superparamagnetic cobalt nanoparticles through solvothermal process, J. Mater. Sci.: Mater. Electron., 24, 4157-4160 (2013). https://doi.org/10.1007/s10854-013-1375-z
  43. Z. Dong, J. Zhang, X. Zhao, J. Tu, Q. Su, and G. Du, Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li–S batteries, RSC Adv., 3, 24914-24917 (2013). https://doi.org/10.1039/c3ra45683h
  44. M. Kim, S. Hwang, and J.-S. Yu, Novel ordered nanoporous graphitic C3 N4 as a support for Pt–Ru anode catalyst in direct methanol fuel cell, J. Mater. Chem., 17, 1656-1659 (2007). https://doi.org/10.1039/B702213A
  45. I. Ibrahim, S. Yunus, and M. Hashim, Relative performance of isopropylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures, Int. J. Sci. Eng. Res., 4, 1-12 (2013).
  46. A. Rehman, S. Houshyar, P. Reineck, R. Padhye, and X. Wang, Multifunctional smart fabrics through nanodiamond-polyaniline nanocomposites, ACS Appl. Polym. Mater., 2, 4848-4855 (2020). https://doi.org/10.1021/acsapm.0c00789
  47. W. Cai, Y. Song, Y. Fang, W. Wang, S. Yu, H. Ao, Y. Zhu, and Y. Qian, Defect engineering on carbon black for accelerated Li-S chemistry, Nano Res., 13, 3315-3320 (2020). https://doi.org/10.1007/s12274-020-3009-0
  48. C. Xu, Y. Wu, X. Zhao, X. Wang, G. Du, J. Zhang, and J. Tu, Sulfur/three-dimensional graphene composite for high performance lithium–sulfur batteries, J. Power Sources, 275, 22-25 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.007
  49. X. Huang, Z. Wang, R. Knibbe, B. Luo, S. A. Ahad, D. Sun, and L. Wang, Cyclic voltammetry in lithium–sulfur batteries—challenges and opportunities, Energy Technol., 7, 1801001 (2019).
  50. S. A. Kim, H. J. Park, S. K. Kim, K. M. Park, and K.-H. Jung, Carbon nanofiber electrodes derived from polyacrylonitrile/cucurbituril composite and their supercapacitor performance, Carbon Lett., 34, 723-730 (2024) https://doi.org/10.1007/s42823-023-00633-w
  51. R. Tang, Evolution of the understanding of quantum capacitance through advancements in graphene-related carbon materials, Carbon Lett., 34, 1845-1849 (2024). https://doi.org/10.1007/s42823-024-00761-x
  52. A. Benítez, J. Amaro-Gahete, D. Esquivel, F. J. Romero-Salguero, J. Morales, and Á. Caballero, MIL-88A metal-organic framework as a stable sulfur-host cathode for long-cycle Li-S batteries, Nanomaterials, 10, 424 (2020).
  53. Y. Fu, J. Hu, Q. Wang, K. Li, and L. Zhou, Thermally etched porous carbon cloth catalyzed by metal organic frameworks as sulfur hosts for lithium–sulfur batteries, Carbon, 150, 76-84 (2019). https://doi.org/10.1016/j.carbon.2019.05.008
  54. Y. Hou, H. Mao, and L. Xu, MIL-100 (V) and MIL-100 (V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries, Nano Res., 10, 344-353 (2017). https://doi.org/10.1007/s12274-016-1326-0
  55. S. Lee, N. Ha, S. Myeong, C. Lim, S.-H. Lee, and Y.-S. Lee, Effect of pyrolysis fuel oil based carbon coating onto CFX cathode on high-rate performance of lithium primary batteries, Appl. Chem. Eng., 35, 321-328 (2024).
  56. D. H. Jeon, B. Chae, and S. Lee, Study of the calendar aging of lithium-ion batteries using SEI growth models, Appl. Chem. Eng., 35, 48-53 (2024)