Acknowledgement
This work was supported by a two-year research grant from Pusan National University.
References
- Y. Jung and S. Kim, New approaches to improve cycle life characteristics of lithium-sulfur cells, Electrochem. Commun., 9, 249-254
- A. Zeng, W. Chen, K. D. Rasmussen, X. Zhu, M. Lundhaug, D. B. Müller, J. Tan, J. K. Keiding, L. Liu, and T. Dai, Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages, Nat. Commun., 13, 1341 (2022).
- X. Ji and L. F. Nazar, Advances in Li–S batteries, J. Mater. Chem., 20, 9821-9826 (2010). https://doi.org/10.1039/b925751a
- A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, and Y.-S. Su, Rechargeable lithium–sulfur batteries, Chem. Rev., 114, 11751-11787 (2014). https://doi.org/10.1021/cr500062v
- M. Lao, G. Zhao, X. Li, Y. Chen, S. X. Dou, and W. Sun, Homogeneous sulfur–cobalt sulfide nanocomposites as lithium–sulfur battery cathodes with enhanced reaction kinetics, ACS Appl. Energy Mater., 1, 167-172 (2017).
- Y. Tsao, M. Lee, E. C. Miller, G. Gao, J. Park, S. Chen, T. Katsumata, H. Tran, L.-W. Wang, and M. F. Toney, Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries, Joule, 3, 872-884 (2019). https://doi.org/10.1016/j.joule.2018.12.018
- J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M. H. Engelhard, J.-G. Zhang, and J. Liu, Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries, Nano Lett., 14, 2345-2352 (2014). https://doi.org/10.1021/nl404721h
- S. A. Ganiyu and S. A. Lateef, Review of adsorptive desulfurization process: Overview of the non-carbonaceous materials, mechanism and synthesis strategies, Fuel, 294, 120273 (2021).
- Y.-S. Su, Y. Fu, T. Cochell, and A. Manthiram, A strategic approach to recharging lithium-sulphur batteries for long cycle life, Nat. Commun., 4, 2985 (2013).
- R. Fang, S. Zhao, Z. Sun, D. W. Wang, H. M. Cheng, F. Li, More reliable lithium‐sulfur batteries: Status, solutions and prospects, Adv. Mater., 29, 1606823 (2017).
- M. Liu, F. Ye, W. Li, H. Li, and Y. Zhang, Chemical routes toward long-lasting lithium/sulfur cells, Nano Res., 9, 94-116 (2016). https://doi.org/10.1007/s12274-016-1027-8
- S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo, and L.-J. Wan, Smaller sulfur molecules promise better lithium–sulfur batteries, J. Am. Chem. Soc., 134, 18510-18513 (2012). https://doi.org/10.1021/ja308170k
- Z. Zhang, L. L. Kong, S. Liu, G. R. Li, and X. P. Gao, A high‐efficiency sulfur/carbon composite based on 3D graphene nanosheet@ carbon nanotube matrix as cathode for lithium–sulfur battery, Adv. Energy Mater., 7, 1602543 (2017).
- L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, and Y. Zhang, Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells, J. Am. Chem. Soc., 133, 18522-18525 (2011). https://doi.org/10.1021/ja206955k
- H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability, Nano Lett., 11, 2644-2647 (2011). https://doi.org/10.1021/nl200658a
- X. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries, Nat. Mater., 8, 500-506 (2009). https://doi.org/10.1038/nmat2460
- B. Zhang, X. Qin, G. Li, and X. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy Environ. Sci., 3, 1531-1537 (2010). https://doi.org/10.1039/c002639e
- J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, and L. F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries, Angew. Chem. Int. Ed., 15, 3591-3595 (2012).
- G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I.R. Gentle, F. Li, and H.-M. Cheng, Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries, ACS Nano, 7, 5367-5375 (2013). https://doi.org/10.1021/nn401228t
- N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, and L. A. Archer, Porous hollow carbon@ sulfur composites for high‐power lithium–sulfur batteries, Angew. Chem. Int. Ed., 50, 5904 (2011).
- Y. Jiang, H. Liu, X. Tan, L. Guo, J. Zhang, S. Liu, Y. Guo, J. Zhang, H. Wang, and W. Chu, Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries, ACS Appl. Mater. Interfaces, 9, 25239-25249 (2017). https://doi.org/10.1021/acsami.7b04432
- Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, and X. Sun, Metal organic frameworks for energy storage and conversion, Energy Storage Mater., 2, 35-62 (2016). https://doi.org/10.1016/j.ensm.2015.11.005
- H. Al Salem, G. Babu, C. V. Rao, and L. M. R. Arava, Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries, J. Am. Chem. Soc., 137, 11542-11545 (2015). https://doi.org/10.1021/jacs.5b04472
- H. Zhang, L. Wang, Q. Li, L. Ma, T. Wu, Y. Ma, J. Wang, C. Du, G. Yin, and P. Zuo, Cobalt nanoparticle-encapsulated carbon nanowire arrays: Enabling the fast redox reaction kinetics of lithium-sulfur batteries, Carbon, 140, 385-393 (2018). https://doi.org/10.1016/j.carbon.2018.09.012
- Y.-J. Li, J.-M. Fan, M.-S. Zheng, and Q.-F. Dong, A novel synergistic composite with multi-functional effects for high-performance Li–S batteries, Energy Environ. Sci., 9, 1998-2004 (2016). https://doi.org/10.1039/C6EE00104A
- G. Babu, K. Ababtain, K. S. Ng, and L. M. R. Arava, Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration, Sci. Rep., 5, 8763 (2015).
- S. Li, X. Chen, F. Hu, R. Zeng, Y. Huang, L. Yuan, and J. Xie, Cobalt-embedded carbon nanofiber as electrocatalyst for polysulfide redox reaction in lithium sulfur batteries, Electrochim. Acta, 304, 11-19 (2019). https://doi.org/10.1016/j.electacta.2019.02.087
- B.-W. Zhang, T. Sheng, Y.-D. Liu, Y.-X. Wang, L. Zhang, W.-H. Lai, L. Wang, J. Yang, Q.-F. Gu, and S.-L. Chou, Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries, Nat. Commun., 9, 4082 (2018).
- Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie, A. Hu, W. Yan, X. Kong, X. Wu, and H. Ji, Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries, J. Am. Chem. Soc., 141, 3977-3985 (2019). https://doi.org/10.1021/jacs.8b12973
- C. Wang, H. Song, C. Yu, Z. Ullah, Z. Guan, R. Chu, Y. Zhang, L. Zhao, Q. Li, and L. Liu, Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries, J. Mater. Chem. A, 8, 3421-3430 (2020). https://doi.org/10.1039/C9TA11680J
- Y. Cao, F. Lei, Y. Li, S. Qiu, Y. Wang, W. Zhang, and Z. Zhang, A MOF-derived carbon host associated with Fe and Co single atoms for Li–Se batteries, J. Mater. Chem. A, 9, 16196-16207 (2021). https://doi.org/10.1039/D1TA04529F
- A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O'keeffe, and O. M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res., 43, 58-67 (2009).
- R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture, Science, 319, 939-943 (2008). https://doi.org/10.1126/science.1152516
- P. Song, S. Zheng, Z. Ullah, Z. Yang, P. Zhu, A. He, C. Wang, and Q. Li, Synergistic effects of FeCo bimetallic single-atom catalysts: Accelerating the redox conversion of polysulfides and inhibiting the growth of lithium dendrites in lithium–sulfur batteries, ACS Appl. Energy Mater., 6, 4671-4682 (2023). https://doi.org/10.1021/acsaem.2c04118
- Y. Li, G. Chen, J. Mou, Y. Liu, S. Xue, T. Tan, W. Zhong, Q. Deng, T. Li, and J. Hu, Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries, Energy Storage Mater., 28, 196-204 (2020). https://doi.org/10.1016/j.ensm.2020.03.008
- J. Zhou, X. Yu, X. Fan, X. Wang, H. Li, Y. Zhang, W. Li, J. Zheng, B. Wang, and X. Li, The impact of the particle size of a metal–organic framework for sulfur storage in Li–S batteries, J. Mater. Chem. A, 3, 8272-8275 (2015). https://doi.org/10.1039/C5TA00524H
- J. Y. Hong, Y. Jung, D.-W. Park, S. Chung, and S. Kim, Synthesis and electrochemical analysis of electrode prepared from zeolitic imidazolate framework (ZIF)-67/graphene composite for lithium sulfur cells, Electrochim. Acta, 259, 1021-1029 (2018). https://doi.org/10.1016/j.electacta.2017.11.016
- B. H. Park, Y. Jung, and S. Kim, Particle size control influence on the electrochemical properties of sulfur deposited on metal organic frameworks host electrodes, J. Inorg. Organomet. Polym. Mater., 31, 1931-1938 (2021). https://doi.org/10.1007/s10904-021-01901-w
- X. Feng and M. A. Carreon, Kinetics of transformation on ZIF-67 crystals, J. Cryst. Growth, 418, 158-162 (2015). https://doi.org/10.1016/j.jcrysgro.2015.02.064
- S. Qiao, D. Lei, Q. Wang, X. Shi, Q. Zhang, C. Huang, A. Liu, G. He, and F. Zhang, Etch-evaporation enabled defect engineering to prepare high-loading Mn single atom catalyst for Li-S battery applications, Chem. Eng. J., 442, 136258 (2022).
- Z. Geng, Y. Cao, W. Chen, X. Kong, Y. Liu, T. Yao, and Y. Lin, Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction, Appl. Catal. B: Environ., 240, 234-240 (2019). https://doi.org/10.1016/j.apcatb.2018.08.075
- M. Alagiri, C. Muthamizhchelvan, and S. B. A. Hamid, Synthesis of superparamagnetic cobalt nanoparticles through solvothermal process, J. Mater. Sci.: Mater. Electron., 24, 4157-4160 (2013). https://doi.org/10.1007/s10854-013-1375-z
- Z. Dong, J. Zhang, X. Zhao, J. Tu, Q. Su, and G. Du, Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li–S batteries, RSC Adv., 3, 24914-24917 (2013). https://doi.org/10.1039/c3ra45683h
- M. Kim, S. Hwang, and J.-S. Yu, Novel ordered nanoporous graphitic C3 N4 as a support for Pt–Ru anode catalyst in direct methanol fuel cell, J. Mater. Chem., 17, 1656-1659 (2007). https://doi.org/10.1039/B702213A
- I. Ibrahim, S. Yunus, and M. Hashim, Relative performance of isopropylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures, Int. J. Sci. Eng. Res., 4, 1-12 (2013).
- A. Rehman, S. Houshyar, P. Reineck, R. Padhye, and X. Wang, Multifunctional smart fabrics through nanodiamond-polyaniline nanocomposites, ACS Appl. Polym. Mater., 2, 4848-4855 (2020). https://doi.org/10.1021/acsapm.0c00789
- W. Cai, Y. Song, Y. Fang, W. Wang, S. Yu, H. Ao, Y. Zhu, and Y. Qian, Defect engineering on carbon black for accelerated Li-S chemistry, Nano Res., 13, 3315-3320 (2020). https://doi.org/10.1007/s12274-020-3009-0
- C. Xu, Y. Wu, X. Zhao, X. Wang, G. Du, J. Zhang, and J. Tu, Sulfur/three-dimensional graphene composite for high performance lithium–sulfur batteries, J. Power Sources, 275, 22-25 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.007
- X. Huang, Z. Wang, R. Knibbe, B. Luo, S. A. Ahad, D. Sun, and L. Wang, Cyclic voltammetry in lithium–sulfur batteries—challenges and opportunities, Energy Technol., 7, 1801001 (2019).
- S. A. Kim, H. J. Park, S. K. Kim, K. M. Park, and K.-H. Jung, Carbon nanofiber electrodes derived from polyacrylonitrile/cucurbituril composite and their supercapacitor performance, Carbon Lett., 34, 723-730 (2024) https://doi.org/10.1007/s42823-023-00633-w
- R. Tang, Evolution of the understanding of quantum capacitance through advancements in graphene-related carbon materials, Carbon Lett., 34, 1845-1849 (2024). https://doi.org/10.1007/s42823-024-00761-x
- A. Benítez, J. Amaro-Gahete, D. Esquivel, F. J. Romero-Salguero, J. Morales, and Á. Caballero, MIL-88A metal-organic framework as a stable sulfur-host cathode for long-cycle Li-S batteries, Nanomaterials, 10, 424 (2020).
- Y. Fu, J. Hu, Q. Wang, K. Li, and L. Zhou, Thermally etched porous carbon cloth catalyzed by metal organic frameworks as sulfur hosts for lithium–sulfur batteries, Carbon, 150, 76-84 (2019). https://doi.org/10.1016/j.carbon.2019.05.008
- Y. Hou, H. Mao, and L. Xu, MIL-100 (V) and MIL-100 (V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries, Nano Res., 10, 344-353 (2017). https://doi.org/10.1007/s12274-016-1326-0
- S. Lee, N. Ha, S. Myeong, C. Lim, S.-H. Lee, and Y.-S. Lee, Effect of pyrolysis fuel oil based carbon coating onto CFX cathode on high-rate performance of lithium primary batteries, Appl. Chem. Eng., 35, 321-328 (2024).
- D. H. Jeon, B. Chae, and S. Lee, Study of the calendar aging of lithium-ion batteries using SEI growth models, Appl. Chem. Eng., 35, 48-53 (2024)