Acknowledgement
이 논문은 2023~2024년도 창원대학교 자율연구과제 연구비 지원으로 수행된 연구결과임
References
- Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, and Z. Chen, Batteries and fuel cells for emerging electric vehicle markets, Nat. Energy, 3, 279-289 (2018). https://doi.org/10.1038/s41560-018-0108-1
- S. Kim, T. R. Tanim, E. J. Dufek, D. Scoffield, T. D. Pennington, K. L. Gering, A. M. Colclasure, W. Mai, A. Meintz, and J. Bennett, Projecting recent advancements in battery technology to next-generation electric vehicles, Energy Technol., 10, 2200303 (2022).
- F. Degen, M. Winter, D. Bendig, and J. Tübke, Energy consumption of current and future production of lithium-ion and postlithium-ion battery cells, Nat. Energy, 8, 1284-1295 (2023). https://doi.org/10.1038/s41560-023-01355-z
- Y. Yang and J. Zhao, Wadsley–roth crystallographic shear structure niobium-based oxides: Promising anode materials for high-safety lithium-ion batteries, Adv. Sci., 8, 2004855 (2021).
- T. Li, G. Nam, K. Liu, J.-H. Wang, B. Zhao, Y. Ding, L. Soule, M. Avdeev, Z. Luo, W. Zhang, T. Yuan, P. Jing, M. G. Kim, Y. Song, and M. Liu, A niobium oxide with a shear structure and planar defects for high-power lithium ion batteries, Energy Environ. Sci., 15, 254-264 (2022). https://doi.org/10.1039/D1EE02664J
- H. Han, Q. Jacquet, Z. Jiang, F. N. Sayed, J.-C. Jeon, A. Sharma, A. M. Schankler, A. Kakekhani, H. L. Meyerheim, J. Park, S. Y. Nam, K. J. Griffith, L. Simonelli, A. M. Rappe, C. P. Grey, and S. S. P. Parkin, Li iontronics in single-crystalline T-Nb2O5 thin films with vertical ionic transport channels, Nat. Mater., 22, 1128-1135 (2023). https://doi.org/10.1038/s41563-023-01612-2
- F. Kenji, K. Kazuhiko, I. Kennichi, and Y. Masaki, Foliated natural graphite as the anode material for rechargeable lithium-ion cells, J. Power Sources, 69, 165-168 (1997). https://doi.org/10.1016/S0378-7753(97)02568-8
- M. Yoshio, H. Wang, K. Fukuda, T. Umeno, T. Abe, and Z. Ogumi, Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere, J. Mater. Chem., 14, 1754-1758 (2004). https://doi.org/10.1039/b316702j
- Y. Liu, Y. Zhu, and Y. Cui, Challenges and opportunities towards fast-charging battery materials, Nat. Energy, 4, 540-550 (2019). https://doi.org/10.1038/s41560-019-0405-3
- L. Zhao, B. Ding, X.-Y. Qin, Z. Wang, W. Lv, Y.-B. He, Q.-H. Yang, and F. Kang, Revisiting the roles of natural graphite in ongoing lithium-ion batteries, Adv. Mater., 34, 2106704 (2022).
- D. W. Murphy, R. J. Cava, S. M. Zahurak, and A. Santoro, Ternary LixTiO2 phases from insertion reactions, Solid State Ion., 9-10, 413-417 (1983). https://doi.org/10.1016/0167-2738(83)90268-0
- K. Ise, S. Morimoto, Y. Harada, and N. Takami, Large lithium storage in highly crystalline TiNb2O7 nanoparticles synthesized by a hydrothermal method as anodes for lithium-ion batteries, Solid State Ion., 320, 7-15 (2018). https://doi.org/10.1016/j.ssi.2018.02.027
- N. Takami, K. Ise, Y. Harada, T. Iwasaki, T. Kishi, and K. Hoshina, High-energy, fast-charging, long-life lithium-ion batteries using TiNb2O7 anodes for automotive applications, J. Power Sources, 396, 429-436 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.059
- K. J. Griffith, K. M. Wiaderek, G. Cibin, L. E. Marbella, and C. P. Grey, Niobium tungsten oxides for high-rate lithium-ion energy storage, Nature, 559, 556-563 (2018). https://doi.org/10.1038/s41586-018-0347-0
- C. P. Koçer, K. J. Griffith, C. P. Grey, and A. J. Morris, Lithium diffusion in niobium tungsten oxide shear structures, Chem. Mater., 32, 3980-3989 (2020). https://doi.org/10.1021/acs.chemmater.0c00483
- R. S. Roth and L. W. Coughanour, Phase equilibrium relations in the systems titania-niobia and zirconia-niobia, J. Res. Nat. Bur. Stand., 55, 209 (1955).
- A. Wadsley, Mixed oxides of titanium and niobium. I, Acta Crystallogr., 14, 660-664 (1961). https://doi.org/10.1107/S0365110X61001996
- P. Jing, M. Liu, H.-P. Ho, Y. Ma, W. Hua, H. Li, N. Guo, Y. Ding, W. Zhang, H. Chen, B. Zhao, J. Wang, and M. Liu, Tailoring the Wadsley–Roth crystallographic shear structures for high-power lithium-ion batteries, Energy Environ. Sci., 17, 6571-6581 (2024). https://doi.org/10.1039/D4EE02293A
- C. Kim, G. Nam, Y. Ahn, X. Hu, and M. Liu, Nb1.60Ti0.32W0.08O5−δas negative electrode active material for durable and fast-charging all-solid-state Li-ion batteries, Nat. Commun., 15, 8832 (2024).
- J.-T. Han and J. B. Goodenough, 3-V Full Cell Performance of Anode Framework TiNb2O7/Spinel LiNi0.5Mn1.5O4, Chem. Mater., 23, 3404-3407 (2011). https://doi.org/10.1021/cm201515g
- J.-T. Han, Y.-H. Huang, and J. B. Goodenough, New anode framework for rechargeable lithium batteries, Chem. Mater., 23, 2027-2029 (2011). https://doi.org/10.1021/cm200441h
- L. Hu, L. Luo, L. Tang, C. Lin, R. Li, and Y. Chen, Ti2Nb2xO4+5x anode materials for lithium-ion batteries: A comprehensive review, J. Mater. Chem. A, 6, 9799-9815 (2018). https://doi.org/10.1039/C8TA00895G
- K. J. Griffith, Y. Harada, S. Egusa, R. M. Ribas, R. S. Monteiro, R. B. Von Dreele, A. K. Cheetham, R. J. Cava, C. P. Grey, and J. B. Goodenough, Titanium niobium oxide: from discovery to application in fast-charging lithium-ion batteries, Chem. Mater., 33, 4-18 (2021). https://doi.org/10.1021/acs.chemmater.0c02955
- H. Aghamohammadi, N. Hassanzadeh, and R. Eslami-Farsani, A comprehensive review study on pure titanium niobium oxide as the anode material for Li-ion batteries, J. Alloys Compd., 911, 165117 (2022).
- X. Lu, Z. Jian, Z. Fang, L. Gu, Y.-S. Hu, W. Chen, Z. Wang, and L. Chen, Atomic-scale investigation on lithium storage mechanism in TiNb2O7, Energy Environ. Sci., 4, 2638-2644 (2011). https://doi.org/10.1039/c0ee00808g
- K. Tang, X. Mu, P. A. van Aken, Y. Yu, and J. Maier, “Nano‐pearl‐string” TiNb2O7 as anodes for rechargeable lithium batteries, Adv. Energy Mater., 3, 49-53 (2012).
- B. Guo, X. Yu, X.-G. Sun, M. Chi, Z.-A. Qiao, J. Liu, Y.-S. Hu, X.-Q. Yang, J.B. Goodenough, and S. Dai, A long-life lithium-ion battery with a highly porous TiNb207 anode for large-scale elec-trical energy storage, Energy Environ. Sci., 7, 2220-2226 (2014). https://doi.org/10.1039/C4EE00508B
- C. Lin, L. Hu, C. Cheng, K. Sun, X. Guo, Q. Shao, J. Li, N. Wang, and Z. Guo, Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage, Electrochim. Acta, 260, 65-72 (2018). https://doi.org/10.1016/j.electacta.2017.11.051
- M. Gasperin, Affinement de la structure de TiNb207 et repartition des cations, J. Solid State Chem., 53, 144-147 (1984). https://doi.org/10.1016/0022-4596(84)90238-X
- S.H. Choi, B. Ali, K. S. Choi, S. K. Hyun, J.J. Sim, W.J. Choi, W. Joo, J.H. Lim, T.H. Lee, T.S. Kim, andK. T. Park, Reaction kinetics and morphological study of TiNb207 synthesized by sol-id-state reaction, Arch. Metall. Mater., 62, 1051-1056 (2017). https://doi.org/10.1515/amm-2017-0152
- D. Deng, M. G. Kim, J.Y. Lee, and J. Cho, Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lith-ium-ion batteries, Energy Environ. Sci., 2, 818-837 (2009). https://doi.org/10.1039/b823474d
- C. Wang, D. Higgins, F. Wang, D.Li, R. Liu, G. Xia, N. Li,Q. Li, H. Xu, and G. Wu, Controlled synthesis of micro/nano-structured CuO anodes for lithium-ion batteries, Nano Energy, 9, 334-344 (2014). https://doi.org/10.1016/j.nanoen.2014.08.009
- P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407, 496-499 (2000). https://doi.org/10.1038/35035045
- H. Zeng, K. Yu, J. Li, M. Yuan, J. Wang, Q. Wang, A. Lai, Y. Jiang, X. Yan, G. Zhang, H. Xu, J. Wang, W. Huang, C. Wang, Y. Deng, and S.-S. Chi, Beyond LiF: Tailoring Li2O-dominated solid electrolyte interphase for stable lithium metal batteries, ACS Nano, 18, 1969-1981 (2024). https://doi.org/10.1021/acsnano.3c07038
- C. Yang, D. Ma, J. Yang, M. Manawan, T. Zhao, Y. Feng, J. Li, Z. Liu, Y. W. Zhang, R. B. Von Dreele, B. H. Toby, C. P. d. L. Albarrán, and J. H. Pan, Crystallographic insight of reduced lattice volume expansion in mesoporous Cu2+‐doped TiNb207 microspheres during Li+ insertion, Adv. Funct. Mater., 33, 2212854 (2023).