DOI QR코드

DOI QR Code

CuO-Coated Titanium Niobium Oxide for High-Power Lithium-Ion Batteries

고출력 리튬이온전지를 위한 CuO 코팅된 타이타늄 나이오븀 옥사이드

  • Chaewon Lee (Department of Battery and Chemical Engineering, Changwon National University) ;
  • Minju An (Department of Battery and Chemical Engineering, Changwon National University) ;
  • Hyosang An (Department of Battery and Chemical Engineering, Changwon National University) ;
  • Eunchae Kim (Department of Battery and Chemical Engineering, Changwon National University) ;
  • Yeonguk Son (Department of Battery and Chemical Engineering, Changwon National University)
  • 이채원 (국립창원대학교 이차전지화학공학전공) ;
  • 안민주 (국립창원대학교 이차전지화학공학전공) ;
  • 안효상 (국립창원대학교 이차전지화학공학전공) ;
  • 김은채 (국립창원대학교 이차전지화학공학전공) ;
  • 손영욱 (국립창원대학교 이차전지화학공학전공)
  • Received : 2024.10.27
  • Accepted : 2024.11.12
  • Published : 2024.12.10

Abstract

The Wadsley-Roth structure of TiNb2O7 (TNO) offers a favorable framework for fast Li-ion diffusion, making it a promising candidate for high-power anode materials in lithium-ion batteries (LIBs). However, its inherently low electronic conductivity, due to a wide bandgap (2.92 eV), limits its electrochemical performance. To address this limitation, we introduced a CuO coating onto micro-sized TNO particles. The CuO coating promotes the formation of a Li2O-rich solid electrolyte interphase (SEI) layer during cycling, which not only enhances ion transport but also reduces SEI layer resistance. Additionally, Cu2+ doping improves electronic conductivity by introducing additional charge carriers. As a result, CuO-TNO maintained a high reversible capacity of 234.5 mAh/g after 100 cycles at 0.5 C and achieved a capacity retention of 94.3% at 5 C in a half-cell with an electrode density of 2.3 g/cm3.

Wadsley-Roth 상의 TiNb2O7 (TNO)은 리튬 이온 확산에 유리한 구조를 가지고 있어, 리튬이온전지(LIBs)의 고출력 음극 물질로 유망한 후보로 주목받고 있다. 그러나 넓은 밴드갭(2.92 eV)으로 인한 낮은 전자전도도는 TNO의 전기화학적 성능을 제한하는 요인이다. 이를 해결하기 위해, 본 연구에서는 마이크로 크기의 TNO에 CuO를 코팅하는 방법을 적용하였다. CuO 코팅은 충·방전 과정을 통해 Li2O 상이 풍부한 solid electrolyte interphase (SEI) 층을 형성하여 이온 수송을 촉진할 뿐만 아니라, SEI 층의 저항을 감소시킨다. 또한 Cu2+가 일부 도핑되어 추가적인 전자 전달 운반체를 제공하여 전자전도도를 향상시킨다. 그 결과, 2.3 g/cm3의 전극 밀도 조건에서 반쪽 전지의 CuO-TNO는 0.5 C로 100 사이클 진행 후 234.5 mAh/g의 높은 가역용량과, 5 C에서 94.3%의 향상된 용량 유지율을 확인하였다.

Keywords

Acknowledgement

이 논문은 2023~2024년도 창원대학교 자율연구과제 연구비 지원으로 수행된 연구결과임

References

  1. Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, and Z. Chen, Batteries and fuel cells for emerging electric vehicle markets, Nat. Energy, 3, 279-289 (2018). https://doi.org/10.1038/s41560-018-0108-1
  2. S. Kim, T. R. Tanim, E. J. Dufek, D. Scoffield, T. D. Pennington, K. L. Gering, A. M. Colclasure, W. Mai, A. Meintz, and J. Bennett, Projecting recent advancements in battery technology to next-generation electric vehicles, Energy Technol., 10, 2200303 (2022).
  3. F. Degen, M. Winter, D. Bendig, and J. Tübke, Energy consumption of current and future production of lithium-ion and postlithium-ion battery cells, Nat. Energy, 8, 1284-1295 (2023). https://doi.org/10.1038/s41560-023-01355-z
  4. Y. Yang and J. Zhao, Wadsley–roth crystallographic shear structure niobium-based oxides: Promising anode materials for high-safety lithium-ion batteries, Adv. Sci., 8, 2004855 (2021).
  5. T. Li, G. Nam, K. Liu, J.-H. Wang, B. Zhao, Y. Ding, L. Soule, M. Avdeev, Z. Luo, W. Zhang, T. Yuan, P. Jing, M. G. Kim, Y. Song, and M. Liu, A niobium oxide with a shear structure and planar defects for high-power lithium ion batteries, Energy Environ. Sci., 15, 254-264 (2022). https://doi.org/10.1039/D1EE02664J
  6. H. Han, Q. Jacquet, Z. Jiang, F. N. Sayed, J.-C. Jeon, A. Sharma, A. M. Schankler, A. Kakekhani, H. L. Meyerheim, J. Park, S. Y. Nam, K. J. Griffith, L. Simonelli, A. M. Rappe, C. P. Grey, and S. S. P. Parkin, Li iontronics in single-crystalline T-Nb2O5 thin films with vertical ionic transport channels, Nat. Mater., 22, 1128-1135 (2023). https://doi.org/10.1038/s41563-023-01612-2
  7. F. Kenji, K. Kazuhiko, I. Kennichi, and Y. Masaki, Foliated natural graphite as the anode material for rechargeable lithium-ion cells, J. Power Sources, 69, 165-168 (1997). https://doi.org/10.1016/S0378-7753(97)02568-8
  8. M. Yoshio, H. Wang, K. Fukuda, T. Umeno, T. Abe, and Z. Ogumi, Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere, J. Mater. Chem., 14, 1754-1758 (2004). https://doi.org/10.1039/b316702j
  9. Y. Liu, Y. Zhu, and Y. Cui, Challenges and opportunities towards fast-charging battery materials, Nat. Energy, 4, 540-550 (2019). https://doi.org/10.1038/s41560-019-0405-3
  10. L. Zhao, B. Ding, X.-Y. Qin, Z. Wang, W. Lv, Y.-B. He, Q.-H. Yang, and F. Kang, Revisiting the roles of natural graphite in ongoing lithium-ion batteries, Adv. Mater., 34, 2106704 (2022).
  11. D. W. Murphy, R. J. Cava, S. M. Zahurak, and A. Santoro, Ternary LixTiO2 phases from insertion reactions, Solid State Ion., 9-10, 413-417 (1983). https://doi.org/10.1016/0167-2738(83)90268-0
  12. K. Ise, S. Morimoto, Y. Harada, and N. Takami, Large lithium storage in highly crystalline TiNb2O7 nanoparticles synthesized by a hydrothermal method as anodes for lithium-ion batteries, Solid State Ion., 320, 7-15 (2018). https://doi.org/10.1016/j.ssi.2018.02.027
  13. N. Takami, K. Ise, Y. Harada, T. Iwasaki, T. Kishi, and K. Hoshina, High-energy, fast-charging, long-life lithium-ion batteries using TiNb2O7 anodes for automotive applications, J. Power Sources, 396, 429-436 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.059
  14. K. J. Griffith, K. M. Wiaderek, G. Cibin, L. E. Marbella, and C. P. Grey, Niobium tungsten oxides for high-rate lithium-ion energy storage, Nature, 559, 556-563 (2018). https://doi.org/10.1038/s41586-018-0347-0
  15. C. P. Koçer, K. J. Griffith, C. P. Grey, and A. J. Morris, Lithium diffusion in niobium tungsten oxide shear structures, Chem. Mater., 32, 3980-3989 (2020). https://doi.org/10.1021/acs.chemmater.0c00483
  16. R. S. Roth and L. W. Coughanour, Phase equilibrium relations in the systems titania-niobia and zirconia-niobia, J. Res. Nat. Bur. Stand., 55, 209 (1955).
  17. A. Wadsley, Mixed oxides of titanium and niobium. I, Acta Crystallogr., 14, 660-664 (1961). https://doi.org/10.1107/S0365110X61001996
  18. P. Jing, M. Liu, H.-P. Ho, Y. Ma, W. Hua, H. Li, N. Guo, Y. Ding, W. Zhang, H. Chen, B. Zhao, J. Wang, and M. Liu, Tailoring the Wadsley–Roth crystallographic shear structures for high-power lithium-ion batteries, Energy Environ. Sci., 17, 6571-6581 (2024). https://doi.org/10.1039/D4EE02293A
  19. C. Kim, G. Nam, Y. Ahn, X. Hu, and M. Liu, Nb1.60Ti0.32W0.08O5−δas negative electrode active material for durable and fast-charging all-solid-state Li-ion batteries, Nat. Commun., 15, 8832 (2024).
  20. J.-T. Han and J. B. Goodenough, 3-V Full Cell Performance of Anode Framework TiNb2O7/Spinel LiNi0.5Mn1.5O4, Chem. Mater., 23, 3404-3407 (2011). https://doi.org/10.1021/cm201515g
  21. J.-T. Han, Y.-H. Huang, and J. B. Goodenough, New anode framework for rechargeable lithium batteries, Chem. Mater., 23, 2027-2029 (2011). https://doi.org/10.1021/cm200441h
  22. L. Hu, L. Luo, L. Tang, C. Lin, R. Li, and Y. Chen, Ti2Nb2xO4+5x anode materials for lithium-ion batteries: A comprehensive review, J. Mater. Chem. A, 6, 9799-9815 (2018). https://doi.org/10.1039/C8TA00895G
  23. K. J. Griffith, Y. Harada, S. Egusa, R. M. Ribas, R. S. Monteiro, R. B. Von Dreele, A. K. Cheetham, R. J. Cava, C. P. Grey, and J. B. Goodenough, Titanium niobium oxide: from discovery to application in fast-charging lithium-ion batteries, Chem. Mater., 33, 4-18 (2021). https://doi.org/10.1021/acs.chemmater.0c02955
  24. H. Aghamohammadi, N. Hassanzadeh, and R. Eslami-Farsani, A comprehensive review study on pure titanium niobium oxide as the anode material for Li-ion batteries, J. Alloys Compd., 911, 165117 (2022).
  25. X. Lu, Z. Jian, Z. Fang, L. Gu, Y.-S. Hu, W. Chen, Z. Wang, and L. Chen, Atomic-scale investigation on lithium storage mechanism in TiNb2O7, Energy Environ. Sci., 4, 2638-2644 (2011). https://doi.org/10.1039/c0ee00808g
  26. K. Tang, X. Mu, P. A. van Aken, Y. Yu, and J. Maier, “Nano‐pearl‐string” TiNb2O7 as anodes for rechargeable lithium batteries, Adv. Energy Mater., 3, 49-53 (2012).
  27. B. Guo, X. Yu, X.-G. Sun, M. Chi, Z.-A. Qiao, J. Liu, Y.-S. Hu, X.-Q. Yang, J.B. Goodenough, and S. Dai, A long-life lithium-ion battery with a highly porous TiNb207 anode for large-scale elec-trical energy storage, Energy Environ. Sci., 7, 2220-2226 (2014). https://doi.org/10.1039/C4EE00508B
  28. C. Lin, L. Hu, C. Cheng, K. Sun, X. Guo, Q. Shao, J. Li, N. Wang, and Z. Guo, Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage, Electrochim. Acta, 260, 65-72 (2018). https://doi.org/10.1016/j.electacta.2017.11.051
  29. M. Gasperin, Affinement de la structure de TiNb207 et repartition des cations, J. Solid State Chem., 53, 144-147 (1984). https://doi.org/10.1016/0022-4596(84)90238-X
  30. S.H. Choi, B. Ali, K. S. Choi, S. K. Hyun, J.J. Sim, W.J. Choi, W. Joo, J.H. Lim, T.H. Lee, T.S. Kim, andK. T. Park, Reaction kinetics and morphological study of TiNb207 synthesized by sol-id-state reaction, Arch. Metall. Mater., 62, 1051-1056 (2017). https://doi.org/10.1515/amm-2017-0152
  31. D. Deng, M. G. Kim, J.Y. Lee, and J. Cho, Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lith-ium-ion batteries, Energy Environ. Sci., 2, 818-837 (2009). https://doi.org/10.1039/b823474d
  32. C. Wang, D. Higgins, F. Wang, D.Li, R. Liu, G. Xia, N. Li,Q. Li, H. Xu, and G. Wu, Controlled synthesis of micro/nano-structured CuO anodes for lithium-ion batteries, Nano Energy, 9, 334-344 (2014). https://doi.org/10.1016/j.nanoen.2014.08.009
  33. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407, 496-499 (2000). https://doi.org/10.1038/35035045
  34. H. Zeng, K. Yu, J. Li, M. Yuan, J. Wang, Q. Wang, A. Lai, Y. Jiang, X. Yan, G. Zhang, H. Xu, J. Wang, W. Huang, C. Wang, Y. Deng, and S.-S. Chi, Beyond LiF: Tailoring Li2O-dominated solid electrolyte interphase for stable lithium metal batteries, ACS Nano, 18, 1969-1981 (2024). https://doi.org/10.1021/acsnano.3c07038
  35. C. Yang, D. Ma, J. Yang, M. Manawan, T. Zhao, Y. Feng, J. Li, Z. Liu, Y. W. Zhang, R. B. Von Dreele, B. H. Toby, C. P. d. L. Albarrán, and J. H. Pan, Crystallographic insight of reduced lattice volume expansion in mesoporous Cu2+‐doped TiNb207 microspheres during Li+ insertion, Adv. Funct. Mater., 33, 2212854 (2023).