DOI QR코드

DOI QR Code

Trends in Solid Carbon Material Synthesis Technology from Carbon Dioxide Conversion

이산화탄소 전환을 통한 고체 탄소 소재 합성 기술 동향

  • Eunchae Oh (Carbon & Light Materials Group, Korea Institute of Industrial Technology) ;
  • Jungpil Kim (Carbon & Light Materials Group, Korea Institute of Industrial Technology)
  • 오은채 (한국생산기술연구원 탄소경량소재그룹) ;
  • 김정필 (한국생산기술연구원 탄소경량소재그룹)
  • Received : 2024.11.07
  • Accepted : 2024.11.15
  • Published : 2024.12.10

Abstract

Climate change, driven by elevated atmospheric CO2 levels since the industrial revolution, stands as one of the most urgent environmental issues of the 21st century. To address this challenge, carbon capture, utilization, and storage technologies have emerged as promising solutions, with particular focus on the conversion of captured CO2 into high-value carbon nanomaterials. This paper systematically reviews major CO2-based carbon nanomaterial synthesis methods, including supercritical CO2 synthesis, chemical vapor deposition, and electrochemical approaches. These techniques enable the synthesis of high-performance carbon nanomaterials in various forms, such as carbon nanotubes, nanofibers, and graphene, demonstrating broad applicability in energy storage, catalysis, environmental remediation, and electronics. By analyzing the current research landscape of CO2-based carbon nanomaterial synthesis, this paper aims to outline the future direction of technology development for sustainable carbon-neutral societies and industrial value creation.

기후변화는 산업화 이후 증가한 대기 중 CO2 농도로 인해 21세기 인류가 직면한 가장 긴급한 환경 문제 중 하나이다. 이를 극복하기 위해 탄소 포집, 활용 및 저장 기술이 대안으로 떠오르고 있으며, 특히 포집된 CO2를 고부가가치 탄소나노물질로 전환하는 연구가 활발히 진행되고 있다. 본 논문에서는 초임계 CO2 합성, 화학 기상 증착, 전기화학적 방법을 포함한 CO2 기반 탄소 나노물질 합성 기술의 주요 방법들을 체계적으로 검토한다. 이러한 기술들은 탄소 나노튜브, 나노섬유, 그래핀 등 다양한 형태의 고성능 탄소 나노물질 합성에 활용되며, 에너지 저장, 촉매, 전자공학, 환경정화 등 다방면에서 응용 가능성을 보여준다. 본 논문은 CO2 전환 고체 탄소 소재 합성 기술의 현재 연구 수준을 분석하고, 지속 가능한 탄소중립 사회와 산업적 가치 창출을 위한 미래 기술 개발의 방향을 제시하고자 한다.

Keywords

Acknowledgement

본 논문은 2024년도 전북 농기계·부품 기술고도화를 위한 인프라활용 기술개발 지원사업의 지원을 받아 수행된 연구임(No. IZ-24-0039)

References

  1. S. C. Peter, Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis, ACS Energy Lett., 3, 1557-1561 (2018). https://doi.org/10.1021/acsenergylett.8b00878
  2. M. Zanatta, Materials for direct air capture and integrated CO2 conversion: Advancement, challenges, and prospects, ACS Mater. Au, 3, 576-583 (2023). https://doi.org/10.1021/acsmaterialsau.3c00061
  3. C. W. Jones, Recent developments in CO2 capture and conversion, JACS Au, 3, 1536-1538 (2023). https://doi.org/10.1021/jacsau.3c00304
  4. N. Arya, Y. Chandran, B. Luhar, P. Kajal, S. Powar, and V. Balakrishnan, Porosity-engineered CNT-MoS2 hybrid nanostructures for bipolar supercapacitor applications, ACS Appl. Mater. Interfaces, 15, 34818-34828 (2023). https://doi.org/10.1021/acsami.3c05098
  5. S. Devi, Suman, S. Chahal, S. Singh, Ankita, P. Kumar, S. Kumar, A. Kumar, and V. Kumar, Magnetic Fe2O3/CNT nanocomposites: Characterization and photocatalytic application towards the degradation of Rose Bengal dye, Ceram. Int., 49, 20071-20079 (2023). https://doi.org/10.1016/j.ceramint.2023.03.130
  6. J. Zhang, X. Liu, M. Zhang, R. Zhang, H. Q. Ta, J. Sun, W. Wang, W. Zhu, T. Fang, K. Jia, X. Sun, X. Zhang, Y. Zhu, J. Shao, Y. Liu, X. Gao, Q. Yang, L. Sun, Q. Li, F. Liang, H. Chen, L. Zheng, F. Wang, W. Yin, X. Wei, J. Yin, T. Gemming, M. H. Rummeli, H. Liu, H. Peng, L. Lin, and Z. Liu, Fast synthesis of large-area bilayer graphene film on Cu, Nat. Commun., 14, 3199 (2023).
  7. R. Liu, S. M. Mahurin, C. Li, R. R. Unocic, J. C. Idrobo, H. Gao, S. J. Pennycook, and S. Dai, Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk‐structured carbon nanocomposites, Angew. Chem. Int. Ed., 50, 6799 (2011).
  8. A. T. Brandão, S. State, R. Costa, P. Potorac, J. A. Vázquez, J. Valcarcel, A. F. Silva, L. Anicai, M. Enachescu, and C. M. Pereira, Renewable carbon materials as electrodes for high-performance supercapacitors: From marine biowaste to high specific surface area porous biocarbons, ACS Omega, 8, 18782-18798 (2023). https://doi.org/10.1021/acsomega.3c00816
  9. M. Q. Zhao, X. F. Liu, Q. Zhang, G. L. Tian, J. Q. Huang, W. Zhu, and F. Wei, Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li–S bat-teries, ACS Nano, 6, 10759-10769 (2012). https://doi.org/10.1021/nn304037d
  10. T. Hatsukade, K. P. Kuhl, E. R. Cave, D. N. Abram, and T. F. Jaramillo, Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces, Phys. Chem. Chem. Phys., 16, 13814-13819 (2014). https://doi.org/10.1039/C4CP00692E
  11. B. Jin, L. Luo, and L. Xie, Pathways and kinetics for autocatalytic reduction of CO2 into formic acid with Fe under hydrothermal conditions, ACS Omega, 6, 11280-11285 (2021). https://doi.org/10.1021/acsomega.1c00119
  12. C. Dannesboe, J. B. Hansen, and I. Johannsen, Catalytic methanation of CO2 in biogas: Experimental results from a reactor at full scale, React. Chem. Eng., 5, 183-189 (2020). https://doi.org/10.1039/C9RE00351G
  13. X. Jiao, K. Zheng, Z. Hu, Y. Sun, and Y. Xie, Broad-spectral-response photocatalysts for CO2 reduction, ACS Cent. Sci., 6, 653-660 (2020). https://doi.org/10.1021/acscentsci.0c00325
  14. Y. Zeng, G. Chen, B. Liu, H. Zhang, and X. Tu, Unraveling temperature-dependent plasma-catalyzed CO2 hydrogenation, Ind. Eng. Chem. Res., 62, 19629-19637 (2023). https://doi.org/10.1021/acs.iecr.3c02827
  15. D. Sanli, S. E. Bozbag, and C. Erkey, Synthesis of nanostructured materials using supercritical CO2: Part I. Physical transformations, J. Mater. Sci., 47, 2995-3025 (2012). https://doi.org/10.1007/s10853-011-6054-y
  16. P. G. Jessop, T. Ikariya, and R. Noyori, Homogeneous catalytic hydrogenation of supercritical carbon dioxide, Nature, 368, 231-233 (1994). https://doi.org/10.1038/368231a0
  17. P. G. Jessop, Y. Hsiao, T. Ikariya, R. Noyori, Methyl formate synthesis by hydrogenation of supercritical carbon dioxide in the presence of methanol, J. Chem. Soc., Chem. Commun., 6, 707-708 (1995).
  18. Q. W. Chen and D. W. Bahnemann, Reduction of carbon dioxide by magnetite: Implications for the primordial synthesis of organic molecules, J. Am. Chem. Soc., 122, 970-971 (2000). https://doi.org/10.1021/ja991278y
  19. K. Nishikawa, I. Tanaka, and Y. Amemiya, Small-angle X-ray scattering study of supercritical carbon dioxide, J. Phys. Chem., 100, 418-421 (1996). https://doi.org/10.1021/jp951803p
  20. T. Tomai, K. Katahira, H. Kubo, Y. Shimizu, T. Sasaki, N. Koshizaki, and K. Terashima, Carbon materials syntheses using dielectric barrier discharge microplasma in supercritical carbon dioxide environments, J. Supercrit. Fluids., 41, 404-411 (2007). https://doi.org/10.1016/j.supflu.2006.12.003
  21. M. Motiei, Y. Rosenfeld Hacohen, J. Calderon-Moreno, and A. Gedanken, Preparing carbon nanotubes and nested fullerenes from supercritical CO2 by a chemical reaction, J. Am. Chem. Soc., 123, 8624-8625 (2001). https://doi.org/10.1021/ja015859a
  22. Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, and T. Hayashi, Growth and structure of graphitic tubules and polyhedral particles in arc-discharge, Chem. Phys. Lett., 204, 277-282 (1993). https://doi.org/10.1016/0009-2614(93)90009-P
  23. W. Qian, L. Wei, F. Cao, Q. Chen, and W. Qian, Low temperature synthesis of carbon nanospheres by reducing supercritical carbon dioxide with bimetallic lithium and potassium, Carbon, 44, 1303-1307 (2006). https://doi.org/10.1016/j.carbon.2006.01.010
  24. Z. Lou, Q. Chen, W. Wang, and Y. Zhang, Synthesis of carbon nanotubes by reduction of carbon dioxide with metallic lithium, Carbon, 41, 3063-3067 (2003). https://doi.org/10.1016/S0008-6223(03)00335-X
  25. E. Y. Goldshleger and U. I. Goldshleger, Combustion of magnesium particles in CO2/CO mixtures, Combust. Sci. Technol., 84, 33-43 (1992). https://doi.org/10.1080/00102209208951843
  26. R. F. H. Hernandha, B. Umesh, J. Patra, C. Y. Chen, J. Li, and J. K. Chang, Core-Shell Si@SiOC particles synthesized using supercritical carbon dioxide fluid for superior Li-ion storage performance, Adv. Sci., 2401350 (2024).
  27. A. R. P. Selvam, S. Pandiyarajan, A. H. Liao, S. S. M. Manickaraj, G. Baskaran, M. Selvaraj, M. A. Assiri, H. Zhou, and H. C. Chuang, Phase-controlled preparation of cubic facet zeolitic imidazole framework-8-derived carbon using supercritical-CO2 medium: A solitary carbon material for symmetric supercapacitor, Carbon, 222, 118968 (2024).
  28. E. G. Rasmussen, J. Kramlich, and I. V. Novosselov, Scalable continuous flow metal–organic framework (MOF) synthesis using supercritical CO2, ACS Sustain. Chem. Eng., 8, 9680-9689 (2020). https://doi.org/10.1021/acssuschemeng.0c01429
  29. X. Qian, J. Cheng, L. Jin, J. Chen, Q. Hao, and K. Zhang, MoC/NC composites derived from Mo doped ZIF-8 for separator modification of lithium-sulfur batteries, Colloids Surf. A: Physicochem. Eng. Asp., 668, 131442 (2023).
  30. T. Kokulnathan, B. Sriram, S. Pandiyarajan, S. Ramanathan, and T. Sakthi Priya, Introduction to biowaste‐derived materials: Synthesis, characterization, and its properties, Biomass‐Derived Carbon Materials: Production and Applications, 1st ed., 27-61, Deutsche Nationalbibliothek, Leipzig, Germany (2022).
  31. J. Niu, Z. Wang, X. Wang, and F. Ran, Zeolitic imidazolate frameworks derived carbon with rational porous structure mediated by polyvinylpyrrolidone applied as electrode materials for supercapacitors, J. Mater. Sci.: Mater. Electron., 34, 721 (2023).
  32. R. F. H. Hernandha, P. C. Rath, B. Umesh, J. Patra, C. Y. Huang, W. W. Wu, Q.-F. Dong, J. Li, and J.-K. Chang, Supercritical CO2‐assisted SiOx/carbon multi‐layer coating on si anode for lithium‐ion batteries, Adv. Funct. Mater., 31, 2104135 (2021).
  33. M. Xie, X. Zhang, J. Laakso, H. Wang, and E. Levänen, New method of postmodifying the particle size and morphology of LiFePO4 via supercritical carbon dioxide, Cryst. Growth Des., 12, 2166-2168 (2012). https://doi.org/10.1021/cg3003146
  34. X. Wang, K. Wen, T. Chen, S. Chen, and S. Zhang, Supercritical fluid-assisted preparation of Si/CNTs@ FG composites with hierarchical conductive networks as a high-performance anode material, Appl. Surf. Sci., 522, 146507 (2020).
  35. H. C. Chuang, J. W. Teng, and W. F. Kuan, Supercritical CO2-enhanced surface modification on LiFePO4 cathodes through ex-situ carbon coating for lithium-ion batteries, Colloids Surf. A: Physicochem. Eng. Asp., 684, 133110 (2024).
  36. L. S. Shankar, S. K. S. Andrade, K. László, D. Zalka, P. B. Nagy, M. Szabados, Z. Pászti, K. Balázsi, Z. Czigány, L. Illés, and R. Kun, A fresh perspective to synthesizing and designing carbon/sulfur composite cathodes using supercritical CO2 technology for advanced Li-S battery cathodes, J. Alloys Compd., 1008, 176691 (2024).
  37. C. Wang, F. Li, H. Qu, Y. Wang, X. Yi, Y. Qiu, Z. Zou, Y. Luo, and B. Yu, Fabrication of three dimensional carbon nanotube foam by direct conversion carbon dioxide and its application in supercapacitor, Electrochim. Acta, 158, 35-41 (2015). https://doi.org/10.1016/j.electacta.2015.01.112
  38. P. Yu and Y. Yuan, One-step synthesis of robust carbon nanotube foams with ultrahigh surface area for high-performance lithium ion battery, Sci. China Technol. Sci., 62, 464-471 (2019). https://doi.org/10.1007/s11431-018-9340-0
  39. H. Zhang, X. Zhang, X. Sun, and Y. Ma, Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide, Sci. Rep., 3, 3534 (2013).
  40. Z. Xing, B. Wang, W. Gao, C. Pan, J. K. Halsted, E. S. Chong, J. Lu, X. Wang, W. Luo, C.-H. Chang, Y. Wen, S. Ma, K. Amine, and X. Ji, Reducing CO2 to dense nanoporous graphene by Mg/Zn for high power electrochemical capacitors, Nano Energy, 11, 600-610 (2015).
  41. K. S. Lin, C. Y. Tang, N. V. Mdlovu, C. J. Chang, C. L. Chiang, and Z. M. Cai, Preparation and characterization of Ni/Al2O3 for carbon nanofiber fabrication from CO2 hydrogenation, Catal. Today, 388, 341-350 (2022). https://doi.org/10.1016/j.cattod.2020.06.008
  42. G. M. Kim, W. G. Lim, D. Kang, J. H. Park, H. Lee, J. Lee, and J. W. Lee, Transformation of carbon dioxide into carbon nanotubes for enhanced ion transport and energy storage, Nanoscale, 12, 7822-7833 (2020). https://doi.org/10.1039/C9NR10552B
  43. P. Gong, C. Tang, B. Wang, T. Xiao, H. Zhu, Q. Li, and Z. Sun, Precise CO2 reduction for bilayer graphene, ACS Cent. Sci., 8, 394-401 (2022). https://doi.org/10.1021/acscentsci.1c01578
  44. A. J. Strudwick, N. E. Weber, M. G. Schwab, M. Kettner, R. T. Weitz, J. R. Wünsch, K. Müllen, and H. Sachdev, Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres, ACS Nano, 9, 31-42 (2015). https://doi.org/10.1021/nn504822m
  45. E. Oh, J. Kim, J. Jang, N. Lee, J. Sah, H. Jeong, S. W. Lee, D. Y. Kim, S.-Y. Jeon, B.-J. Kim, J. Yang, and J. Kim, Tandem thermocatalytic reaction for CO2 fixation into single-walled carbon nanotubes, Energy Fuels, 38, 22974-22985 (2024). https://doi.org/10.1021/acs.energyfuels.4c04096
  46. S. Moradmand and J. Allen, Magnetic carbon formation via in-situ CO2 capture and electrolysis in a molten carbonate system, Mater. Today Sustain., 25, 100645 (2024).
  47. H. Wu, Z. Li, D. Ji, Y. Liu, G. Yi, D. Yuan, B. Wang, and Z. Zhang, Effect of molten carbonate composition on the generation of carbon material, RSC Adv., 7, 8467-8473 (2017). https://doi.org/10.1039/C6RA25229J
  48. M. Johnson, J. Ren, M. Lefler, G. Licht, J. Vicini, X. Liu, and S. Licht, Carbon nanotube wools made directly from CO2 by molten electrolysis: Value driven pathways to carbon dioxide greenhouse gas mitigation, Mater. Today Energy, 5, 230-236 (2017). https://doi.org/10.1016/j.mtener.2017.07.003
  49. D. J. Eaglesham and M. Cerullo, Dislocation-free stranski-krasta now growth of Ge on Si(100), Phys. Rev. Lett., 64, 1943 (1990).
  50. M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, Selfassembly of well-aligned gallium-doped zinc oxide nanorods, J. Appl. Phys., 94, 5240-5246 (2003). https://doi.org/10.1063/1.1608473
  51. A. Yu, G. Ma, J. Jiang, Y. Hu, M. Su, W. Long, S. Gao, H.-Y. Hsu, P. Peng, and F. F. Li, Bio‐inspired and eco‐friendly synthesis of 3D spongy meso‐microporous carbons from CO2 for supercapacitors, Chem: Eur. J., 27, 10405-10412 (2021). https://doi.org/10.1002/chem.202100998
  52. Z. Li, D. Yuan, H. Wu, W. Li, and D. Gu, A novel route to synthesize carbon spheres and carbon nanotubes from carbon dioxide in a molten carbonate electrolyzer, Inorg. Chem. Front., 5, 208-216 (2018). https://doi.org/10.1039/C7QI00479F
  53. L. Geng, X. Wang, K. Han, P. Hu, L. Zhou, Y. Zhao, W. Luo, and L. Mai, Eutectic electrolytes in advanced metal-ion batteries, ACS Energy Lett., 7, 247-260 (2021).
  54. H. Wu, Z. Li, D. Ji, Y. Liu, L. Li, D. Yuan, Z. Zhang, J. Ren, M. Lefler, B. Wang, and S. Licht, One-pot synthesis of nanostructured carbon materials from carbon dioxide via electrolysis in molten carbonate salts, Carbon, 106, 208-217 (2016). https://doi.org/10.1016/j.carbon.2016.05.031
  55. Z. Li, G. Wang, W. Zhang, Z. Qiao, and H. Wu, Carbon nanotubes synthesis from CO2 based on the molten salts electrochemistry: Effect of alkaline earth carbonate additives on the diameter of the carbon nanotubes, J. Electrochem. Soc., 166, D415 (2019).
  56. F. F. Li, S. Liu, B. Cui, J. Lau, J. Stuart, B. Wang, and S. Licht, A one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide, Adv. Energy Mater., 5, 1-7 (2015).
  57. X. Wang, X. Liu, G. Licht, and S. Licht, Calcium metaborate induced thin walled carbon nanotube syntheses from CO2 by molten carbonate electrolysis, Sci. Rep., 10, 15146 (2020).
  58. J. Ren and S. Licht, Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes, Sci. Rep., 6, 27760 (2016)