Acknowledgement
본 논문은 2024년도 전북 농기계·부품 기술고도화를 위한 인프라활용 기술개발 지원사업의 지원을 받아 수행된 연구임(No. IZ-24-0039)
References
- S. C. Peter, Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis, ACS Energy Lett., 3, 1557-1561 (2018). https://doi.org/10.1021/acsenergylett.8b00878
- M. Zanatta, Materials for direct air capture and integrated CO2 conversion: Advancement, challenges, and prospects, ACS Mater. Au, 3, 576-583 (2023). https://doi.org/10.1021/acsmaterialsau.3c00061
- C. W. Jones, Recent developments in CO2 capture and conversion, JACS Au, 3, 1536-1538 (2023). https://doi.org/10.1021/jacsau.3c00304
- N. Arya, Y. Chandran, B. Luhar, P. Kajal, S. Powar, and V. Balakrishnan, Porosity-engineered CNT-MoS2 hybrid nanostructures for bipolar supercapacitor applications, ACS Appl. Mater. Interfaces, 15, 34818-34828 (2023). https://doi.org/10.1021/acsami.3c05098
- S. Devi, Suman, S. Chahal, S. Singh, Ankita, P. Kumar, S. Kumar, A. Kumar, and V. Kumar, Magnetic Fe2O3/CNT nanocomposites: Characterization and photocatalytic application towards the degradation of Rose Bengal dye, Ceram. Int., 49, 20071-20079 (2023). https://doi.org/10.1016/j.ceramint.2023.03.130
- J. Zhang, X. Liu, M. Zhang, R. Zhang, H. Q. Ta, J. Sun, W. Wang, W. Zhu, T. Fang, K. Jia, X. Sun, X. Zhang, Y. Zhu, J. Shao, Y. Liu, X. Gao, Q. Yang, L. Sun, Q. Li, F. Liang, H. Chen, L. Zheng, F. Wang, W. Yin, X. Wei, J. Yin, T. Gemming, M. H. Rummeli, H. Liu, H. Peng, L. Lin, and Z. Liu, Fast synthesis of large-area bilayer graphene film on Cu, Nat. Commun., 14, 3199 (2023).
- R. Liu, S. M. Mahurin, C. Li, R. R. Unocic, J. C. Idrobo, H. Gao, S. J. Pennycook, and S. Dai, Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk‐structured carbon nanocomposites, Angew. Chem. Int. Ed., 50, 6799 (2011).
- A. T. Brandão, S. State, R. Costa, P. Potorac, J. A. Vázquez, J. Valcarcel, A. F. Silva, L. Anicai, M. Enachescu, and C. M. Pereira, Renewable carbon materials as electrodes for high-performance supercapacitors: From marine biowaste to high specific surface area porous biocarbons, ACS Omega, 8, 18782-18798 (2023). https://doi.org/10.1021/acsomega.3c00816
- M. Q. Zhao, X. F. Liu, Q. Zhang, G. L. Tian, J. Q. Huang, W. Zhu, and F. Wei, Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li–S bat-teries, ACS Nano, 6, 10759-10769 (2012). https://doi.org/10.1021/nn304037d
- T. Hatsukade, K. P. Kuhl, E. R. Cave, D. N. Abram, and T. F. Jaramillo, Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces, Phys. Chem. Chem. Phys., 16, 13814-13819 (2014). https://doi.org/10.1039/C4CP00692E
- B. Jin, L. Luo, and L. Xie, Pathways and kinetics for autocatalytic reduction of CO2 into formic acid with Fe under hydrothermal conditions, ACS Omega, 6, 11280-11285 (2021). https://doi.org/10.1021/acsomega.1c00119
- C. Dannesboe, J. B. Hansen, and I. Johannsen, Catalytic methanation of CO2 in biogas: Experimental results from a reactor at full scale, React. Chem. Eng., 5, 183-189 (2020). https://doi.org/10.1039/C9RE00351G
- X. Jiao, K. Zheng, Z. Hu, Y. Sun, and Y. Xie, Broad-spectral-response photocatalysts for CO2 reduction, ACS Cent. Sci., 6, 653-660 (2020). https://doi.org/10.1021/acscentsci.0c00325
- Y. Zeng, G. Chen, B. Liu, H. Zhang, and X. Tu, Unraveling temperature-dependent plasma-catalyzed CO2 hydrogenation, Ind. Eng. Chem. Res., 62, 19629-19637 (2023). https://doi.org/10.1021/acs.iecr.3c02827
- D. Sanli, S. E. Bozbag, and C. Erkey, Synthesis of nanostructured materials using supercritical CO2: Part I. Physical transformations, J. Mater. Sci., 47, 2995-3025 (2012). https://doi.org/10.1007/s10853-011-6054-y
- P. G. Jessop, T. Ikariya, and R. Noyori, Homogeneous catalytic hydrogenation of supercritical carbon dioxide, Nature, 368, 231-233 (1994). https://doi.org/10.1038/368231a0
- P. G. Jessop, Y. Hsiao, T. Ikariya, R. Noyori, Methyl formate synthesis by hydrogenation of supercritical carbon dioxide in the presence of methanol, J. Chem. Soc., Chem. Commun., 6, 707-708 (1995).
- Q. W. Chen and D. W. Bahnemann, Reduction of carbon dioxide by magnetite: Implications for the primordial synthesis of organic molecules, J. Am. Chem. Soc., 122, 970-971 (2000). https://doi.org/10.1021/ja991278y
- K. Nishikawa, I. Tanaka, and Y. Amemiya, Small-angle X-ray scattering study of supercritical carbon dioxide, J. Phys. Chem., 100, 418-421 (1996). https://doi.org/10.1021/jp951803p
- T. Tomai, K. Katahira, H. Kubo, Y. Shimizu, T. Sasaki, N. Koshizaki, and K. Terashima, Carbon materials syntheses using dielectric barrier discharge microplasma in supercritical carbon dioxide environments, J. Supercrit. Fluids., 41, 404-411 (2007). https://doi.org/10.1016/j.supflu.2006.12.003
- M. Motiei, Y. Rosenfeld Hacohen, J. Calderon-Moreno, and A. Gedanken, Preparing carbon nanotubes and nested fullerenes from supercritical CO2 by a chemical reaction, J. Am. Chem. Soc., 123, 8624-8625 (2001). https://doi.org/10.1021/ja015859a
- Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, and T. Hayashi, Growth and structure of graphitic tubules and polyhedral particles in arc-discharge, Chem. Phys. Lett., 204, 277-282 (1993). https://doi.org/10.1016/0009-2614(93)90009-P
- W. Qian, L. Wei, F. Cao, Q. Chen, and W. Qian, Low temperature synthesis of carbon nanospheres by reducing supercritical carbon dioxide with bimetallic lithium and potassium, Carbon, 44, 1303-1307 (2006). https://doi.org/10.1016/j.carbon.2006.01.010
- Z. Lou, Q. Chen, W. Wang, and Y. Zhang, Synthesis of carbon nanotubes by reduction of carbon dioxide with metallic lithium, Carbon, 41, 3063-3067 (2003). https://doi.org/10.1016/S0008-6223(03)00335-X
- E. Y. Goldshleger and U. I. Goldshleger, Combustion of magnesium particles in CO2/CO mixtures, Combust. Sci. Technol., 84, 33-43 (1992). https://doi.org/10.1080/00102209208951843
- R. F. H. Hernandha, B. Umesh, J. Patra, C. Y. Chen, J. Li, and J. K. Chang, Core-Shell Si@SiOC particles synthesized using supercritical carbon dioxide fluid for superior Li-ion storage performance, Adv. Sci., 2401350 (2024).
- A. R. P. Selvam, S. Pandiyarajan, A. H. Liao, S. S. M. Manickaraj, G. Baskaran, M. Selvaraj, M. A. Assiri, H. Zhou, and H. C. Chuang, Phase-controlled preparation of cubic facet zeolitic imidazole framework-8-derived carbon using supercritical-CO2 medium: A solitary carbon material for symmetric supercapacitor, Carbon, 222, 118968 (2024).
- E. G. Rasmussen, J. Kramlich, and I. V. Novosselov, Scalable continuous flow metal–organic framework (MOF) synthesis using supercritical CO2, ACS Sustain. Chem. Eng., 8, 9680-9689 (2020). https://doi.org/10.1021/acssuschemeng.0c01429
- X. Qian, J. Cheng, L. Jin, J. Chen, Q. Hao, and K. Zhang, MoC/NC composites derived from Mo doped ZIF-8 for separator modification of lithium-sulfur batteries, Colloids Surf. A: Physicochem. Eng. Asp., 668, 131442 (2023).
- T. Kokulnathan, B. Sriram, S. Pandiyarajan, S. Ramanathan, and T. Sakthi Priya, Introduction to biowaste‐derived materials: Synthesis, characterization, and its properties, Biomass‐Derived Carbon Materials: Production and Applications, 1st ed., 27-61, Deutsche Nationalbibliothek, Leipzig, Germany (2022).
- J. Niu, Z. Wang, X. Wang, and F. Ran, Zeolitic imidazolate frameworks derived carbon with rational porous structure mediated by polyvinylpyrrolidone applied as electrode materials for supercapacitors, J. Mater. Sci.: Mater. Electron., 34, 721 (2023).
- R. F. H. Hernandha, P. C. Rath, B. Umesh, J. Patra, C. Y. Huang, W. W. Wu, Q.-F. Dong, J. Li, and J.-K. Chang, Supercritical CO2‐assisted SiOx/carbon multi‐layer coating on si anode for lithium‐ion batteries, Adv. Funct. Mater., 31, 2104135 (2021).
- M. Xie, X. Zhang, J. Laakso, H. Wang, and E. Levänen, New method of postmodifying the particle size and morphology of LiFePO4 via supercritical carbon dioxide, Cryst. Growth Des., 12, 2166-2168 (2012). https://doi.org/10.1021/cg3003146
- X. Wang, K. Wen, T. Chen, S. Chen, and S. Zhang, Supercritical fluid-assisted preparation of Si/CNTs@ FG composites with hierarchical conductive networks as a high-performance anode material, Appl. Surf. Sci., 522, 146507 (2020).
- H. C. Chuang, J. W. Teng, and W. F. Kuan, Supercritical CO2-enhanced surface modification on LiFePO4 cathodes through ex-situ carbon coating for lithium-ion batteries, Colloids Surf. A: Physicochem. Eng. Asp., 684, 133110 (2024).
- L. S. Shankar, S. K. S. Andrade, K. László, D. Zalka, P. B. Nagy, M. Szabados, Z. Pászti, K. Balázsi, Z. Czigány, L. Illés, and R. Kun, A fresh perspective to synthesizing and designing carbon/sulfur composite cathodes using supercritical CO2 technology for advanced Li-S battery cathodes, J. Alloys Compd., 1008, 176691 (2024).
- C. Wang, F. Li, H. Qu, Y. Wang, X. Yi, Y. Qiu, Z. Zou, Y. Luo, and B. Yu, Fabrication of three dimensional carbon nanotube foam by direct conversion carbon dioxide and its application in supercapacitor, Electrochim. Acta, 158, 35-41 (2015). https://doi.org/10.1016/j.electacta.2015.01.112
- P. Yu and Y. Yuan, One-step synthesis of robust carbon nanotube foams with ultrahigh surface area for high-performance lithium ion battery, Sci. China Technol. Sci., 62, 464-471 (2019). https://doi.org/10.1007/s11431-018-9340-0
- H. Zhang, X. Zhang, X. Sun, and Y. Ma, Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide, Sci. Rep., 3, 3534 (2013).
- Z. Xing, B. Wang, W. Gao, C. Pan, J. K. Halsted, E. S. Chong, J. Lu, X. Wang, W. Luo, C.-H. Chang, Y. Wen, S. Ma, K. Amine, and X. Ji, Reducing CO2 to dense nanoporous graphene by Mg/Zn for high power electrochemical capacitors, Nano Energy, 11, 600-610 (2015).
- K. S. Lin, C. Y. Tang, N. V. Mdlovu, C. J. Chang, C. L. Chiang, and Z. M. Cai, Preparation and characterization of Ni/Al2O3 for carbon nanofiber fabrication from CO2 hydrogenation, Catal. Today, 388, 341-350 (2022). https://doi.org/10.1016/j.cattod.2020.06.008
- G. M. Kim, W. G. Lim, D. Kang, J. H. Park, H. Lee, J. Lee, and J. W. Lee, Transformation of carbon dioxide into carbon nanotubes for enhanced ion transport and energy storage, Nanoscale, 12, 7822-7833 (2020). https://doi.org/10.1039/C9NR10552B
- P. Gong, C. Tang, B. Wang, T. Xiao, H. Zhu, Q. Li, and Z. Sun, Precise CO2 reduction for bilayer graphene, ACS Cent. Sci., 8, 394-401 (2022). https://doi.org/10.1021/acscentsci.1c01578
- A. J. Strudwick, N. E. Weber, M. G. Schwab, M. Kettner, R. T. Weitz, J. R. Wünsch, K. Müllen, and H. Sachdev, Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres, ACS Nano, 9, 31-42 (2015). https://doi.org/10.1021/nn504822m
- E. Oh, J. Kim, J. Jang, N. Lee, J. Sah, H. Jeong, S. W. Lee, D. Y. Kim, S.-Y. Jeon, B.-J. Kim, J. Yang, and J. Kim, Tandem thermocatalytic reaction for CO2 fixation into single-walled carbon nanotubes, Energy Fuels, 38, 22974-22985 (2024). https://doi.org/10.1021/acs.energyfuels.4c04096
- S. Moradmand and J. Allen, Magnetic carbon formation via in-situ CO2 capture and electrolysis in a molten carbonate system, Mater. Today Sustain., 25, 100645 (2024).
- H. Wu, Z. Li, D. Ji, Y. Liu, G. Yi, D. Yuan, B. Wang, and Z. Zhang, Effect of molten carbonate composition on the generation of carbon material, RSC Adv., 7, 8467-8473 (2017). https://doi.org/10.1039/C6RA25229J
- M. Johnson, J. Ren, M. Lefler, G. Licht, J. Vicini, X. Liu, and S. Licht, Carbon nanotube wools made directly from CO2 by molten electrolysis: Value driven pathways to carbon dioxide greenhouse gas mitigation, Mater. Today Energy, 5, 230-236 (2017). https://doi.org/10.1016/j.mtener.2017.07.003
- D. J. Eaglesham and M. Cerullo, Dislocation-free stranski-krasta now growth of Ge on Si(100), Phys. Rev. Lett., 64, 1943 (1990).
- M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, Selfassembly of well-aligned gallium-doped zinc oxide nanorods, J. Appl. Phys., 94, 5240-5246 (2003). https://doi.org/10.1063/1.1608473
- A. Yu, G. Ma, J. Jiang, Y. Hu, M. Su, W. Long, S. Gao, H.-Y. Hsu, P. Peng, and F. F. Li, Bio‐inspired and eco‐friendly synthesis of 3D spongy meso‐microporous carbons from CO2 for supercapacitors, Chem: Eur. J., 27, 10405-10412 (2021). https://doi.org/10.1002/chem.202100998
- Z. Li, D. Yuan, H. Wu, W. Li, and D. Gu, A novel route to synthesize carbon spheres and carbon nanotubes from carbon dioxide in a molten carbonate electrolyzer, Inorg. Chem. Front., 5, 208-216 (2018). https://doi.org/10.1039/C7QI00479F
- L. Geng, X. Wang, K. Han, P. Hu, L. Zhou, Y. Zhao, W. Luo, and L. Mai, Eutectic electrolytes in advanced metal-ion batteries, ACS Energy Lett., 7, 247-260 (2021).
- H. Wu, Z. Li, D. Ji, Y. Liu, L. Li, D. Yuan, Z. Zhang, J. Ren, M. Lefler, B. Wang, and S. Licht, One-pot synthesis of nanostructured carbon materials from carbon dioxide via electrolysis in molten carbonate salts, Carbon, 106, 208-217 (2016). https://doi.org/10.1016/j.carbon.2016.05.031
- Z. Li, G. Wang, W. Zhang, Z. Qiao, and H. Wu, Carbon nanotubes synthesis from CO2 based on the molten salts electrochemistry: Effect of alkaline earth carbonate additives on the diameter of the carbon nanotubes, J. Electrochem. Soc., 166, D415 (2019).
- F. F. Li, S. Liu, B. Cui, J. Lau, J. Stuart, B. Wang, and S. Licht, A one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide, Adv. Energy Mater., 5, 1-7 (2015).
- X. Wang, X. Liu, G. Licht, and S. Licht, Calcium metaborate induced thin walled carbon nanotube syntheses from CO2 by molten carbonate electrolysis, Sci. Rep., 10, 15146 (2020).
- J. Ren and S. Licht, Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes, Sci. Rep., 6, 27760 (2016)