Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (No. 2021R1A2C1009926).
References
- S. Imani, A. J. Bandodkar, A. M. V. Mohan, R. Kumar, S. Yu, J. Wang, and P. P. Mercier, A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring, Nat. Commun., 7, 11650 (2016).
- A. Keshet, L. Reicher, N. Bar, and E. Segal, Wearable and digital devices to monitor and treat metabolic diseases, Nat. Metab., 5, 563-571 (2023). https://doi.org/10.1038/s42255-023-00778-y
- H. C. Ates, P. Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder, J. J. Collins, and C. Dincer, End-to-end design of wearable sensors, Nat. Rev. Mater., 7, 887-907 (2022). https://doi.org/10.1038/s41578-022-00460-x
- I. Wicaksono, C. I. Tucker, T. Sun, C. A. Guerrero, C. Liu, W. M. Woo, E. J. Pence, and C. Dagdeviren, A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo, npj Flex. Electron., 4, 5 (2020).
- H. Y. Y. Nyein, M. Bariya, B. Tran, C. H. Ahn, B. J. Brown, W. Ji, N. Davis, and A. Javey, A wearable patch for continuous analysis of thermoregulatory sweat at rest, Nat. Commun., 12, 1823 (2021).
- S. Gyu Son, H. Jun Park, S.-M. Kim, S. Jin Kim, M. Sik Kil, J.-M. Jeong, Y. Lee, Y. Eom, S. Yeon Hwang, J. Park, and B. Gill Choi, Ultra-fast self-healable stretchable bio-based elastomer/graphene ink using fluid dynamics process for printed wearable sweat-monitoring sensor, Chem. Eng. J., 454, 140443 (2023).
- C. Huang, Z. Hao, Z. Wang, H. Wang, X. Zhao, and Y. Pan, An Ultraflexible and Transparent Graphene-Based Wearable Sensor for Biofluid Biomarkers Detection, Adv. Mater. Technol., 7, 2101131(2022).
- Y. Bi, M. Sun, J. Wang, Z. Zhu, J. Bai, M. Y. Emran, A. Kotb, X. Bo, and M. Zhou, Universal fully integrated wearable sensor arrays for the multiple electrolyte and metabolite monitoring in raw sweat, saliva, or urine, Anal. Chem., 95, 6690-6699 (2023). https://doi.org/10.1021/acs.analchem.3c00361
- R. Liu, Q. Nie, Y. Wang, Y. Wu, Y. Tu, C. Xie, X. Xiao, R. You, and Y. Lu, Diaper-based wearable SERS sensing system with a silver nano dual-structure composite hydrogel for the detection of biomarkers and pH in urine, Chem. Eng. J., 498, 155207 (2024).
- J. Li, H. Jia, J. Zhou, X. Huang, L. Xu, S. Jia, Z. Gao, K. Yao, D. Li, B. Zhang, Y. Liu, Y. Huang, Y. Hu, G. Zhao, Z. Xu, J. Li, C. K. Yiu, Y. Gao, M. Wu, Y. Jiao, Q. Zhang, X. Tai, R. H. Chan, Y. Zhang, X. Ma, and X. Yu, Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure, Nat. Commun., 14, 5009 (2023).
- M. Bariya, H. Y. Y. Nyein, and A. Javey, Wearable sweat sensors, Nat. Electron., 1, 160-171 (2018). https://doi.org/10.1038/s41928-018-0043-y
- G. Dimeski, T. Badrick, and A. S. John, Ion Selective Electrodes (ISEs) and interferences—A review, Clin. Chim. Acta, 411, 309-317 (2010). https://doi.org/10.1016/j.cca.2009.12.005
- J. H. Yoon, S. B. Hong, S.-O. Yun, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, High performance flexible pH sensor based on polyaniline nanopillar array electrode, J. Colloid Interface Sci., 490, 53-58 (2017). https://doi.org/10.1016/j.jcis.2016.11.033
- J. M. Barat, L. Gil, E. García-Breijo, M. C. Aristoy, F. Toldrá, R. Martínez-Máñez, and J. Soto, Freshness monitoring of sea bream (Sparus aurata) with a potentiometric sensor, Food Chem., 108, 681-688 (2008). https://doi.org/10.1016/j.foodchem.2007.10.034
- J. H. Yoon, K. H. Kim, N. H. Bae, G. S. Sim, Y.-J. Oh, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, Fabrication of newspaper-based potentiometric platforms for flexible and disposable ion sensors, J. Colloid Interface Sci., 508, 167-173 (2017). https://doi.org/10.1016/j.jcis.2017.08.036
- V. I. Adamchuk, E. D. Lund, B. Sethuramasamyraja, M. T. Morgan, A. Dobermann, and D. B. Marx, Direct measurement of soil chemical properties on-the-go using ion-selective electrodes, Comput. Electron. Agr., 48, 272-294 (2005). https://doi.org/10.1016/j.compag.2005.05.001
- S. Anastasova, A. Radu, G. Matzeu, C. Zuliani, U. Mattinen, J. Bobacka, and D. Diamond, Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection, Electrochim. Acta, 73, 93-97 (2012). https://doi.org/10.1016/j.electacta.2011.10.089
- J. H. Yoon, H. J. Park, S. H. Park, K. G. Lee, and B. G. Choi, Electrochemical characterization of reduced graphene oxide as an ion-to-electron transducer and application of screen-printed all-solid-state potassium ion sensors, Carbon Lett., 30, 73-80 (2020). https://doi.org/10.1007/s42823-019-00072-6
- P. Bühlmann, E. Pretsch, and E. Bakker, Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors, Chem. Rev., 98, 1593-1688 (1998). https://doi.org/10.1021/cr970113+
- E. Bakker, P. Bühlmann, and E. Pretsch, Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chem. Rev., 97, 3083-3132 (1997). https://doi.org/10.1021/cr940394a
- M. Cuartero and G. A. Crespo, All-solid-state potentiometric sensors: A new wave for in situ aquatic research, Curr. Opin. Electrochem., 10, 98-106 (2018). https://doi.org/10.1016/j.coelec.2018.04.004
- J. Hu, A. Stein, and P. Bühlmann, Rational design of all-solid-state ion-selective electrodes and reference electrodes, TrAC, Trends Anal. Chem., 76, 102-114 (2016). https://doi.org/10.1016/j.trac.2015.11.004
- R. W. Cattrall and H. Freiser, Coated wire ion-selective electrodes, Anal. Chem., 43, 1905-1906 (1971). https://doi.org/10.1021/ac60307a032
- E. Lindner and B. D. Pendley, A tutorial on the application of ion-selective electrode potentiometry: An analytical method with unique qualities, unexplored opportunities and potential pitfalls; Tutorial, Anal. Chim. Acta, 762, 1-13 (2013). https://doi.org/10.1016/j.aca.2012.11.022
- M. Akieh-Pirkanniemi, G. Lisak, J. Arroyo, J. Bobacka, and A. Ivaska, Tuned ionophore-based bi-membranes for selective transport of target ions, J. Membr. Sci., 511, 76-83 (2016). https://doi.org/10.1016/j.memsci.2016.03.042
- T. Guinovart, G. A. Crespo, F. X. Rius, and F. J. Andrade, A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements, Anal. Chim. Acta, 821, 72-80 (2014). https://doi.org/10.1016/j.aca.2014.02.028
- B. Mahanty, A. K. Satpati, S. Kumar, A. Leoncini, J. Huskens, W. Verboom, and P. K. Mohapatra, Development of polyvinyl chloride (PVC)-based highly efficient potentiometric sensors containing two benzene-centered tripodal diglycolamides as ionophores, Sens. Actuators B Chem., 320, 127961 (2020).
- M. Cuartero, G. A. Crespo, and E. Bakker, Polyurethane ionophore-based thin layer membranes for voltammetric ion activity sensing, Anal. Chem., 88, 5649-5654 (2016). https://doi.org/10.1021/acs.analchem.6b01085
- T. Liang, N. Jiang, S. Zhou, X. Wang, Y. Xu, C. Wu, D. Kirsanov, A. Legin, H. Wan, and P. Wang, Multiplexed all-solid state ion-sensitive light-addressable potentiometric sensor (ISLAPS) system based on silicone-rubber for physiological ions detection, Anal. Chim. Acta, 1179, 338603 (2021).
- A. J. Bandodkar, I. Jeerapan, J.-M. You, R. Nuñez-Flores, and J. Wang, Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: Combining intrinsic and design-induced stretchability, Nano Lett., 16, 721-727 (2016). https://doi.org/10.1021/acs.nanolett.5b04549
- N. Siangdee, P. Supchocksoonthorn, J. Suwanboriboon, W. Meesiri, K. Chauyrod, W. Chaisriratanakul, W. Bunjongpru, N. Youngvises, and P. Paoprasert, Flow automatic system using an ion-selective field-effect transistor for the real-time/online detection of ammonium ions in aquaculture water, Electrochim. Acta, 499, 144721 (2024).
- F. Sundfors, T. Lindfors, L. Höfler, R. Bereczki, and R. E. Gyurcsányi, FTIR-ATR study of water uptake and diffusion through ion-selective membranes based on poly(acrylates) and silicone rubber, Anal. Chem., 81, 5925-5934 (2009). https://doi.org/10.1021/ac900727w
- M. Telting-Diaz and E. Bakker, Effect of lipophilic ion-exchanger leaching on the detection limit of carrier-based ion-selective electrodes, Anal. Chem., 73, 5582-5589 (2001). https://doi.org/10.1021/ac010526h
- Y. Shao, Y. Ying, and J. Ping, Recent advances in solid-contaction-selective electrodes: Functional materials, transduction mechanisms, and development trends, Chem. Soc. Rev., 49, 4405-4465 (2020). https://doi.org/10.1039/C9CS00587K
- Y. Bao, J. Yan, J. Hu, and J. Li, Superhydrophobic polyaniline solid contact for potential stability improvement of NH4+-selective electrode, Sens. Actuators B Chem., 390, 133997 (2023).
- E. Jaworska, A. Michalska, and K. Maksymiuk, Polypyrrole nanospheres – electrochemical properties and application as a solid contact in ion-selective electrodes, Electroanalysis, 29, 123-130 (2017). https://doi.org/10.1002/elan.201600554
- J. H. Yoon, S.-M. Kim, Y. Eom, J. M. Koo, H.-W. Cho, T. J. Lee, K. G. Lee, H. J. Park, Y. K. Kim, H.-J. Yoo, S. Y. Hwang, J. Park, and B. G. Choi, Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor, ACS Appl. Mater. Interfaces, 11, 46165-46175 (2019). https://doi.org/10.1021/acsami.9b16829
- C. Chen, H. Wang, Q. Xiao, M. Zhao, Y. Li, G. Zhao, Y. Xie, X. Chen, and G. Zhu, Porous carbon hollow rod for supercapacitors with high energy density, Ind. Eng. Chem. Res., 58, 22124-22132 (2019). https://doi.org/10.1021/acs.iecr.9b05133
- D. A. Yanchus, D. W. Kirk, and C. Q. Jia, Investigating the effects of biochar electrode macrostructure and dimension on electrical double-layer capacitor performance, J. Electrochem. Soc., 165, A305 (2018).
- T. Zhang, C.-Z. Lai, M. A. Fierke, A. Stein, and P. Bühlmann, Advantages and limitations of reference electrodes with an ionic liquid junction and three-dimensionally ordered macroporous carbon as solid contact, Anal. Chem., 84, 7771-7778 (2012). https://doi.org/10.1021/ac3011507
- G. A. Crespo, S. Macho, J. Bobacka, and F. X. Rius, Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes, Anal. Chem., 81, 676-681 (2009). https://doi.org/10.1021/ac802078z
- H. J. Park, J.-M. Jeong, J. H. Yoon, S. G. Son, Y. K. Kim, D. H. Kim, K. G. Lee, and B. G. Choi, Preparation of ultrathin defect-free graphene sheets from graphite via fluidic delamination for solid-contact ion-to-electron transducers in potentiometric sensors, J. Colloid Interface Sci., 560, 817-824 (2020). https://doi.org/10.1016/j.jcis.2019.11.001
- E. S. Yoon, H. J. Park, J. H. Yoon, and B. G. Choi, Hydrophobic ionic liquid-modified graphene via fluid-dynamic process for ionto-electron transducers for all-solid-state potentiometric sensors, Carbon Lett., 33, 1561-1569 (2023). https://doi.org/10.1007/s42823-023-00521-3
- X. V. Chen and P. Bühlmann, Ion-selective potentiometric sensors with silicone sensing membranes: A review, Curr. Opin. Electrochem., 32, 100896 (2022).
- O. Özbek and C. Berkel, Recent advances in potentiometric analysis: Paper–based devices, Sens. Int., 3, 100189 (2022).
- S. A. Hassan, N. B. ElDin, H. E. Zaazaa, A. A. Moustafa, and A. M. Mahmoud, Point-of-care diagnostics for drugs of abuse in biological fluids: application of a microfabricated disposable copper potentiometric sensor, Mikrochim. Acta, 187, 491 (2020).
- G. Hu, J. Kang, L. W. T. Ng, X. Zhu, R. C. T. Howe, C. G. Jones, M. C. Hersam, and T. Hasan, Functional inks and printing of two-dimensional materials, Chem. Soc. Rev., 47, 3265-3300 (2018). https://doi.org/10.1039/C8CS00084K
- H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Converg., 6, 9 (2019).
- H. J. Park, J.-M. Jeong, S. G. Son, S. J. Kim, M. Lee, H. J. Kim, J. Jeong, S. Y. Hwang, J. Park, Y. Eom, and B. G. Choi, Fluid-dynamics-processed highly stretchable, conductive, and printable graphene inks for real-time monitoring sweat during stretching exercise, Adv. Funct. Mater., 31, 2011059 (2021).
- R. P. Buck and E. Lindner, Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994), Pure Appl. Chem., 66, 2527-2536 (1994). https://doi.org/10.1351/pac199466122527
- J. M. Pingarrón, J. Labuda, J. Barek, C. M. A. Brett, M. F. Camões, M. Fojta, and D. B. Hibbert, Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure Appl. Chem., 92, 641-694 (2020). https://doi.org/10.1515/pac-2018-0109
- H. Y. Y. Nyein, M. Bariya, L. Kivimäki, S. Uusitalo, T. S. Liaw, E. Jansson, C. H. Ahn, J. A. Hangasky, J. Zhao, Y. Lin, T. Happonen, M. Chao, C. Liedert, Y. Zhao, L.-C. Tai, J. Hiltunen, and A. Javey, Regional and correlative sweat analysis using high throughput microfluidic sensing patches toward decoding sweat, Sci. Adv., 5, eaaw9906 (2019).
- C. Maccà, Response time of ion-selective electrodes: Current usage versus IUPAC recommendations, Anal. Chim. Acta, 512, 183-190 (2004). https://doi.org/10.1016/j.aca.2004.03.010
- E. Bakker, E. Pretsch, and P. Bühlmann, Selectivity of potentiometric ion sensors, Anal. Chem., 72, 1127-1133 (2000). https://doi.org/10.1021/ac991146n
- M. Parrilla, M. Cuartero, and G. A. Crespo, Wearable potentiometric ion sensors, TrAC, Trends Anal. Chem., 110, 303-320 (2019). https://doi.org/10.1016/j.trac.2018.11.024
- D. S. Kim, J.-M. Jeong, H. J. Park, Y. K. Kim, K. G. Lee, and B. G. Choi, Highly concentrated, conductive, defect-free graphene ink for screen-printed sensor application, Nano-Micro Lett., 13, 87 (2021).
- W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.-H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis, Nature, 529, 509-514 (2016). https://doi.org/10.1038/nature16521
- M. Rovira, C. Lafaye, S. Demuru, B. P. Kunnel, J. Aymerich, J. Cuenca, F. Serra-Graells, J. M. Margarit-Taulé, R. Haque, M. Saubade, C. Fernández-Sánchez, and C. Jimenez-Jorquera, Assessing the performance of a robust multiparametric wearable patch integrating silicon-based sensors for real-time continuous monitoring of sweat biomarkers, Biosens. Bioelectron., 262, 116560 (2024).
- H. Y. Y. Nyein, W. Gao, Z. Shahpar, S. Emaminejad, S. Challa, K. Chen, H. M. Fahad, L.-C. Tai, H. Ota, R. W. Davis, and A. Javey, A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH, ACS Nano, 10, 7216-7224 (2016). https://doi.org/10.1021/acsnano.6b04005
- T. Guinovart, A. J. Bandodkar, J. R. Windmiller, F. J. Andrade, and J. Wang, A potentiometric tattoo sensor for monitoring ammonium in sweat, Analyst, 138, 7031-7038 (2013). https://doi.org/10.1039/c3an01672b
- J. H. Yoon, S.-M. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H.-W. Cho, K. G. Lee, S. Y. Hwang, J. Park, and B. G. Choi, Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids, Biosens. Bioelectron., 150, 111946 (2020).
- Y. Song, R. Y. Tay, J. Li, C. Xu, J. Min, E. Shirzaei Sani, G. Kim, W. Heng, I. Kim, and W. Gao, 3D-printed epifluidic electronic skin for machine learning–powered multimodal health surveillance, Sci. Adv., 9, eadi6492 (2023)