DOI QR코드

DOI QR Code

All-Solid-State Ion-selective Electrodes for Wearable Healthcare Devices

  • Hong Jun Park (Department of Energy Resources and Chemical Engineering, Kangwon National University) ;
  • Sung Tae Jang (Department of Energy Resources and Chemical Engineering, Kangwon National University) ;
  • Bong Gill Choi (Department of Energy Resources and Chemical Engineering, Kangwon National University)
  • Received : 2024.10.20
  • Accepted : 2024.11.11
  • Published : 2024.12.10

Abstract

Wearable potentiometric sensors have attracted significant attention in advancement in personal healthcare devices and diagnostics due to their remote, non-invasive, and continuous monitoring of health-related signals during daily activities. All-solid-state ion-selective electrodes have promoted practical applications, offering ease of operation, rapid measurement, and low energy consumption. Here, this review describes the principles, structure, and characterization of a potentiometric sensor based on the guidelines of the International Union of Pure and Applied Chemistry (IUPAC). Wearable sensor applications to detect various electrolytes in sweat samples were also discussed, along with their challenges and future opportunities to improve the reliability and accuracy of sensor readings.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (No. 2021R1A2C1009926).

References

  1. S. Imani, A. J. Bandodkar, A. M. V. Mohan, R. Kumar, S. Yu, J. Wang, and P. P. Mercier, A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring, Nat. Commun., 7, 11650 (2016).
  2. A. Keshet, L. Reicher, N. Bar, and E. Segal, Wearable and digital devices to monitor and treat metabolic diseases, Nat. Metab., 5, 563-571 (2023). https://doi.org/10.1038/s42255-023-00778-y
  3. H. C. Ates, P. Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder, J. J. Collins, and C. Dincer, End-to-end design of wearable sensors, Nat. Rev. Mater., 7, 887-907 (2022). https://doi.org/10.1038/s41578-022-00460-x
  4. I. Wicaksono, C. I. Tucker, T. Sun, C. A. Guerrero, C. Liu, W. M. Woo, E. J. Pence, and C. Dagdeviren, A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo, npj Flex. Electron., 4, 5 (2020).
  5. H. Y. Y. Nyein, M. Bariya, B. Tran, C. H. Ahn, B. J. Brown, W. Ji, N. Davis, and A. Javey, A wearable patch for continuous analysis of thermoregulatory sweat at rest, Nat. Commun., 12, 1823 (2021).
  6. S. Gyu Son, H. Jun Park, S.-M. Kim, S. Jin Kim, M. Sik Kil, J.-M. Jeong, Y. Lee, Y. Eom, S. Yeon Hwang, J. Park, and B. Gill Choi, Ultra-fast self-healable stretchable bio-based elastomer/graphene ink using fluid dynamics process for printed wearable sweat-monitoring sensor, Chem. Eng. J., 454, 140443 (2023).
  7. C. Huang, Z. Hao, Z. Wang, H. Wang, X. Zhao, and Y. Pan, An Ultraflexible and Transparent Graphene-Based Wearable Sensor for Biofluid Biomarkers Detection, Adv. Mater. Technol., 7, 2101131(2022).
  8. Y. Bi, M. Sun, J. Wang, Z. Zhu, J. Bai, M. Y. Emran, A. Kotb, X. Bo, and M. Zhou, Universal fully integrated wearable sensor arrays for the multiple electrolyte and metabolite monitoring in raw sweat, saliva, or urine, Anal. Chem., 95, 6690-6699 (2023). https://doi.org/10.1021/acs.analchem.3c00361
  9. R. Liu, Q. Nie, Y. Wang, Y. Wu, Y. Tu, C. Xie, X. Xiao, R. You, and Y. Lu, Diaper-based wearable SERS sensing system with a silver nano dual-structure composite hydrogel for the detection of biomarkers and pH in urine, Chem. Eng. J., 498, 155207 (2024).
  10. J. Li, H. Jia, J. Zhou, X. Huang, L. Xu, S. Jia, Z. Gao, K. Yao, D. Li, B. Zhang, Y. Liu, Y. Huang, Y. Hu, G. Zhao, Z. Xu, J. Li, C. K. Yiu, Y. Gao, M. Wu, Y. Jiao, Q. Zhang, X. Tai, R. H. Chan, Y. Zhang, X. Ma, and X. Yu, Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure, Nat. Commun., 14, 5009 (2023).
  11. M. Bariya, H. Y. Y. Nyein, and A. Javey, Wearable sweat sensors, Nat. Electron., 1, 160-171 (2018). https://doi.org/10.1038/s41928-018-0043-y
  12. G. Dimeski, T. Badrick, and A. S. John, Ion Selective Electrodes (ISEs) and interferences—A review, Clin. Chim. Acta, 411, 309-317 (2010). https://doi.org/10.1016/j.cca.2009.12.005
  13. J. H. Yoon, S. B. Hong, S.-O. Yun, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, High performance flexible pH sensor based on polyaniline nanopillar array electrode, J. Colloid Interface Sci., 490, 53-58 (2017). https://doi.org/10.1016/j.jcis.2016.11.033
  14. J. M. Barat, L. Gil, E. García-Breijo, M. C. Aristoy, F. Toldrá, R. Martínez-Máñez, and J. Soto, Freshness monitoring of sea bream (Sparus aurata) with a potentiometric sensor, Food Chem., 108, 681-688 (2008). https://doi.org/10.1016/j.foodchem.2007.10.034
  15. J. H. Yoon, K. H. Kim, N. H. Bae, G. S. Sim, Y.-J. Oh, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, Fabrication of newspaper-based potentiometric platforms for flexible and disposable ion sensors, J. Colloid Interface Sci., 508, 167-173 (2017). https://doi.org/10.1016/j.jcis.2017.08.036
  16. V. I. Adamchuk, E. D. Lund, B. Sethuramasamyraja, M. T. Morgan, A. Dobermann, and D. B. Marx, Direct measurement of soil chemical properties on-the-go using ion-selective electrodes, Comput. Electron. Agr., 48, 272-294 (2005). https://doi.org/10.1016/j.compag.2005.05.001
  17. S. Anastasova, A. Radu, G. Matzeu, C. Zuliani, U. Mattinen, J. Bobacka, and D. Diamond, Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection, Electrochim. Acta, 73, 93-97 (2012). https://doi.org/10.1016/j.electacta.2011.10.089
  18. J. H. Yoon, H. J. Park, S. H. Park, K. G. Lee, and B. G. Choi, Electrochemical characterization of reduced graphene oxide as an ion-to-electron transducer and application of screen-printed all-solid-state potassium ion sensors, Carbon Lett., 30, 73-80 (2020). https://doi.org/10.1007/s42823-019-00072-6
  19. P. Bühlmann, E. Pretsch, and E. Bakker, Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors, Chem. Rev., 98, 1593-1688 (1998). https://doi.org/10.1021/cr970113+
  20. E. Bakker, P. Bühlmann, and E. Pretsch, Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chem. Rev., 97, 3083-3132 (1997). https://doi.org/10.1021/cr940394a
  21. M. Cuartero and G. A. Crespo, All-solid-state potentiometric sensors: A new wave for in situ aquatic research, Curr. Opin. Electrochem., 10, 98-106 (2018). https://doi.org/10.1016/j.coelec.2018.04.004
  22. J. Hu, A. Stein, and P. Bühlmann, Rational design of all-solid-state ion-selective electrodes and reference electrodes, TrAC, Trends Anal. Chem., 76, 102-114 (2016). https://doi.org/10.1016/j.trac.2015.11.004
  23. R. W. Cattrall and H. Freiser, Coated wire ion-selective electrodes, Anal. Chem., 43, 1905-1906 (1971). https://doi.org/10.1021/ac60307a032
  24. E. Lindner and B. D. Pendley, A tutorial on the application of ion-selective electrode potentiometry: An analytical method with unique qualities, unexplored opportunities and potential pitfalls; Tutorial, Anal. Chim. Acta, 762, 1-13 (2013). https://doi.org/10.1016/j.aca.2012.11.022
  25. M. Akieh-Pirkanniemi, G. Lisak, J. Arroyo, J. Bobacka, and A. Ivaska, Tuned ionophore-based bi-membranes for selective transport of target ions, J. Membr. Sci., 511, 76-83 (2016). https://doi.org/10.1016/j.memsci.2016.03.042
  26. T. Guinovart, G. A. Crespo, F. X. Rius, and F. J. Andrade, A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements, Anal. Chim. Acta, 821, 72-80 (2014). https://doi.org/10.1016/j.aca.2014.02.028
  27. B. Mahanty, A. K. Satpati, S. Kumar, A. Leoncini, J. Huskens, W. Verboom, and P. K. Mohapatra, Development of polyvinyl chloride (PVC)-based highly efficient potentiometric sensors containing two benzene-centered tripodal diglycolamides as ionophores, Sens. Actuators B Chem., 320, 127961 (2020).
  28. M. Cuartero, G. A. Crespo, and E. Bakker, Polyurethane ionophore-based thin layer membranes for voltammetric ion activity sensing, Anal. Chem., 88, 5649-5654 (2016). https://doi.org/10.1021/acs.analchem.6b01085
  29. T. Liang, N. Jiang, S. Zhou, X. Wang, Y. Xu, C. Wu, D. Kirsanov, A. Legin, H. Wan, and P. Wang, Multiplexed all-solid state ion-sensitive light-addressable potentiometric sensor (ISLAPS) system based on silicone-rubber for physiological ions detection, Anal. Chim. Acta, 1179, 338603 (2021).
  30. A. J. Bandodkar, I. Jeerapan, J.-M. You, R. Nuñez-Flores, and J. Wang, Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: Combining intrinsic and design-induced stretchability, Nano Lett., 16, 721-727 (2016). https://doi.org/10.1021/acs.nanolett.5b04549
  31. N. Siangdee, P. Supchocksoonthorn, J. Suwanboriboon, W. Meesiri, K. Chauyrod, W. Chaisriratanakul, W. Bunjongpru, N. Youngvises, and P. Paoprasert, Flow automatic system using an ion-selective field-effect transistor for the real-time/online detection of ammonium ions in aquaculture water, Electrochim. Acta, 499, 144721 (2024).
  32. F. Sundfors, T. Lindfors, L. Höfler, R. Bereczki, and R. E. Gyurcsányi, FTIR-ATR study of water uptake and diffusion through ion-selective membranes based on poly(acrylates) and silicone rubber, Anal. Chem., 81, 5925-5934 (2009). https://doi.org/10.1021/ac900727w
  33. M. Telting-Diaz and E. Bakker, Effect of lipophilic ion-exchanger leaching on the detection limit of carrier-based ion-selective electrodes, Anal. Chem., 73, 5582-5589 (2001). https://doi.org/10.1021/ac010526h
  34. Y. Shao, Y. Ying, and J. Ping, Recent advances in solid-contaction-selective electrodes: Functional materials, transduction mechanisms, and development trends, Chem. Soc. Rev., 49, 4405-4465 (2020). https://doi.org/10.1039/C9CS00587K
  35. Y. Bao, J. Yan, J. Hu, and J. Li, Superhydrophobic polyaniline solid contact for potential stability improvement of NH4+-selective electrode, Sens. Actuators B Chem., 390, 133997 (2023).
  36. E. Jaworska, A. Michalska, and K. Maksymiuk, Polypyrrole nanospheres – electrochemical properties and application as a solid contact in ion-selective electrodes, Electroanalysis, 29, 123-130 (2017). https://doi.org/10.1002/elan.201600554
  37. J. H. Yoon, S.-M. Kim, Y. Eom, J. M. Koo, H.-W. Cho, T. J. Lee, K. G. Lee, H. J. Park, Y. K. Kim, H.-J. Yoo, S. Y. Hwang, J. Park, and B. G. Choi, Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor, ACS Appl. Mater. Interfaces, 11, 46165-46175 (2019). https://doi.org/10.1021/acsami.9b16829
  38. C. Chen, H. Wang, Q. Xiao, M. Zhao, Y. Li, G. Zhao, Y. Xie, X. Chen, and G. Zhu, Porous carbon hollow rod for supercapacitors with high energy density, Ind. Eng. Chem. Res., 58, 22124-22132 (2019). https://doi.org/10.1021/acs.iecr.9b05133
  39. D. A. Yanchus, D. W. Kirk, and C. Q. Jia, Investigating the effects of biochar electrode macrostructure and dimension on electrical double-layer capacitor performance, J. Electrochem. Soc., 165, A305 (2018).
  40. T. Zhang, C.-Z. Lai, M. A. Fierke, A. Stein, and P. Bühlmann, Advantages and limitations of reference electrodes with an ionic liquid junction and three-dimensionally ordered macroporous carbon as solid contact, Anal. Chem., 84, 7771-7778 (2012). https://doi.org/10.1021/ac3011507
  41. G. A. Crespo, S. Macho, J. Bobacka, and F. X. Rius, Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes, Anal. Chem., 81, 676-681 (2009). https://doi.org/10.1021/ac802078z
  42. H. J. Park, J.-M. Jeong, J. H. Yoon, S. G. Son, Y. K. Kim, D. H. Kim, K. G. Lee, and B. G. Choi, Preparation of ultrathin defect-free graphene sheets from graphite via fluidic delamination for solid-contact ion-to-electron transducers in potentiometric sensors, J. Colloid Interface Sci., 560, 817-824 (2020). https://doi.org/10.1016/j.jcis.2019.11.001
  43. E. S. Yoon, H. J. Park, J. H. Yoon, and B. G. Choi, Hydrophobic ionic liquid-modified graphene via fluid-dynamic process for ionto-electron transducers for all-solid-state potentiometric sensors, Carbon Lett., 33, 1561-1569 (2023). https://doi.org/10.1007/s42823-023-00521-3
  44. X. V. Chen and P. Bühlmann, Ion-selective potentiometric sensors with silicone sensing membranes: A review, Curr. Opin. Electrochem., 32, 100896 (2022).
  45. O. Özbek and C. Berkel, Recent advances in potentiometric analysis: Paper–based devices, Sens. Int., 3, 100189 (2022).
  46. S. A. Hassan, N. B. ElDin, H. E. Zaazaa, A. A. Moustafa, and A. M. Mahmoud, Point-of-care diagnostics for drugs of abuse in biological fluids: application of a microfabricated disposable copper potentiometric sensor, Mikrochim. Acta, 187, 491 (2020).
  47. G. Hu, J. Kang, L. W. T. Ng, X. Zhu, R. C. T. Howe, C. G. Jones, M. C. Hersam, and T. Hasan, Functional inks and printing of two-dimensional materials, Chem. Soc. Rev., 47, 3265-3300 (2018). https://doi.org/10.1039/C8CS00084K
  48. H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Converg., 6, 9 (2019).
  49. H. J. Park, J.-M. Jeong, S. G. Son, S. J. Kim, M. Lee, H. J. Kim, J. Jeong, S. Y. Hwang, J. Park, Y. Eom, and B. G. Choi, Fluid-dynamics-processed highly stretchable, conductive, and printable graphene inks for real-time monitoring sweat during stretching exercise, Adv. Funct. Mater., 31, 2011059 (2021).
  50. R. P. Buck and E. Lindner, Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994), Pure Appl. Chem., 66, 2527-2536 (1994). https://doi.org/10.1351/pac199466122527
  51. J. M. Pingarrón, J. Labuda, J. Barek, C. M. A. Brett, M. F. Camões, M. Fojta, and D. B. Hibbert, Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure Appl. Chem., 92, 641-694 (2020). https://doi.org/10.1515/pac-2018-0109
  52. H. Y. Y. Nyein, M. Bariya, L. Kivimäki, S. Uusitalo, T. S. Liaw, E. Jansson, C. H. Ahn, J. A. Hangasky, J. Zhao, Y. Lin, T. Happonen, M. Chao, C. Liedert, Y. Zhao, L.-C. Tai, J. Hiltunen, and A. Javey, Regional and correlative sweat analysis using high throughput microfluidic sensing patches toward decoding sweat, Sci. Adv., 5, eaaw9906 (2019).
  53. C. Maccà, Response time of ion-selective electrodes: Current usage versus IUPAC recommendations, Anal. Chim. Acta, 512, 183-190 (2004). https://doi.org/10.1016/j.aca.2004.03.010
  54. E. Bakker, E. Pretsch, and P. Bühlmann, Selectivity of potentiometric ion sensors, Anal. Chem., 72, 1127-1133 (2000). https://doi.org/10.1021/ac991146n
  55. M. Parrilla, M. Cuartero, and G. A. Crespo, Wearable potentiometric ion sensors, TrAC, Trends Anal. Chem., 110, 303-320 (2019). https://doi.org/10.1016/j.trac.2018.11.024
  56. D. S. Kim, J.-M. Jeong, H. J. Park, Y. K. Kim, K. G. Lee, and B. G. Choi, Highly concentrated, conductive, defect-free graphene ink for screen-printed sensor application, Nano-Micro Lett., 13, 87 (2021).
  57. W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.-H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis, Nature, 529, 509-514 (2016). https://doi.org/10.1038/nature16521
  58. M. Rovira, C. Lafaye, S. Demuru, B. P. Kunnel, J. Aymerich, J. Cuenca, F. Serra-Graells, J. M. Margarit-Taulé, R. Haque, M. Saubade, C. Fernández-Sánchez, and C. Jimenez-Jorquera, Assessing the performance of a robust multiparametric wearable patch integrating silicon-based sensors for real-time continuous monitoring of sweat biomarkers, Biosens. Bioelectron., 262, 116560 (2024).
  59. H. Y. Y. Nyein, W. Gao, Z. Shahpar, S. Emaminejad, S. Challa, K. Chen, H. M. Fahad, L.-C. Tai, H. Ota, R. W. Davis, and A. Javey, A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH, ACS Nano, 10, 7216-7224 (2016). https://doi.org/10.1021/acsnano.6b04005
  60. T. Guinovart, A. J. Bandodkar, J. R. Windmiller, F. J. Andrade, and J. Wang, A potentiometric tattoo sensor for monitoring ammonium in sweat, Analyst, 138, 7031-7038 (2013). https://doi.org/10.1039/c3an01672b
  61. J. H. Yoon, S.-M. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H.-W. Cho, K. G. Lee, S. Y. Hwang, J. Park, and B. G. Choi, Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids, Biosens. Bioelectron., 150, 111946 (2020).
  62. Y. Song, R. Y. Tay, J. Li, C. Xu, J. Min, E. Shirzaei Sani, G. Kim, W. Heng, I. Kim, and W. Gao, 3D-printed epifluidic electronic skin for machine learning–powered multimodal health surveillance, Sci. Adv., 9, eadi6492 (2023)