Acknowledgement
본 연구는 (주)비나텍의 수탁연구과제(수퍼커패시터의 내구성 향상을 위한 활성탄 표면 처리 기술 개발)와 산업통상자원부의 민·군경용기술개발사업(민·군경용기술개발사업 : 24-CM-EE-01)의 지원을 받아 수행하였으며 이에 감사드립니다.
References
- S. Jarosław and D. Bartosz, Activated carbons—Preparation, characterization and their application in CO2 capture: A review, Environ. Sci. Pollut. Res., 31, 40008-40062 (2024).
- Q. Weichen, Y. Dong, H. Jiang, W. Loh, and H. Imbrongo, A new approach of simultaneous adsorption and regeneration of activated carbon to address the bottlenecks of pharmaceutical wastewater treatment, Water Res., 252, 121180 (2024).
- Y. Neolaka, A. Riwu, U. Aigbe, O. Ukhurebor, R. Onyancha, H. Darmokoesoemo, and H. Kusuma, Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes, Results Chem., 5, 100711 (2023).
- X. He, D. Bresser, S. Passerini, F. Baakes, U. Krewer, J. Lopez, and R. Kostecki, The passivity of lithium electrodes in liquid electrolytes for secondary batteries, Nat. Rev. Mater., 6, 1036-1052 (2021). https://doi.org/10.1038/s41578-021-00345-5
- F. Wu, Y. Liu, Y. Li, X. Feng, K. Zhang, Y. Bai, and C. Wu, High-mass-loading electrodes for advanced secondary batteries and supercapacitors, Electrochem. Energy Rev., 4, 382-446 (2021). https://doi.org/10.1007/s41918-020-00093-0
- Y. Zhao, O. Pohl, A. Bhatt, I. Collis, P. Mahon, T. Rüther, and A. Hollenkamp, A review on battery market trends, second-life reuse, and recycling, Sustain. Chem., 2, 167-205 (2021). https://doi.org/10.3390/suschem2010011
- P. Dubey, V. Shrivastav, P. Maheshwari, and S. Sundriyal, Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: Challenges and opportunities, Carbon, 170, 1-29 (2020). https://doi.org/10.1016/j.carbon.2020.07.056
- F. Liu, M. Liu, Y. Li, X. Feng, K. Zhang, Y. Bai, and C. Wu, High-mass-loading electrodes for advanced secondary batteries and supercapacitors, Electrochem. Energy Rev., 4, 382-446 (2021). https://doi.org/10.1007/s41918-020-00093-0
- F. Cheng, X. Yang, S. Zhang, and W. Lu, Boosting the supercapacitor performances of activated carbon with carbon nanomaterials, J. Power Sources, 450, 227678 (2020).
- S. Sundriyal, V. Shrivastav, H. Pham, D. Mishra, and P. Dubal, Advances in bio-waste derived activated carbon for supercapacitors: Trends, challenges and prospective, Resour. Conserv. Recycl., 169, 105548 (2021).
- C. Jiang, G. Yakaboylu, T. Yumak, J. Zondlo, E. Sabolsky, and J. Wang, Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes, Renew. Energy, 155, 38-52 (2020). https://doi.org/10.1016/j.renene.2020.03.111
- I. Inal and Z. Aktas, Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment, Appl. Surf. Sci., 514, 145895 (2020).
- F. Cheng, X. Yang, S. Zhang, and W. Lu, Boosting the supercapacitor performances of activated carbon with carbon nanomaterials, J. Power Sources, 450, 227678 (2020).
- M. I. Kim, J. S. Im, S. W. Seo, J. H. Cho, and Y. S, Lee, Preparation of pitch-based activated carbon with surface-treated fly ash for SO2 gas removal, Carbon Lett., 30, 381-387 (2020). https://doi.org/10.1007/s42823-019-00107-y
- J.H. Kim, Y.J. Choi, J. S. Im, and B. C. Bai, Study of activation mechanism for dual model pore structured carbon based on effects of molecular weight of petroleum pitch, J. Ind. Eng. Chem., 88, 251-259 (2020). https://doi.org/10.1016/j.jiec.2020.04.022
- Z. Heidarinejad, M. Dehghani, M. Heidari, G., Javedan, I. Ali, and M. Sillanpää, Methods for preparation and activation of activated carbon: A review, Environ. Chem. Lett., 18, 393-415 (2020). https://doi.org/10.1007/s10311-019-00955-0
- S. Yaglikci, Y. Gokce, E. Yagmur, and Z. Aktas, The performance of sulphur doped activated carbon supercapacitors prepared from waste tea, Environ. Technol., 41, 36-48 (2020). https://doi.org/10.1080/09593330.2019.1575480
- D. Gandla, X. Wu, F. Zhang, C. Wu, and D. Q. Tan, High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels, ACS Omega, 6, 7615-7625 (2021). https://doi.org/10.1021/acsomega.0c06171
- S. M. Mousavi, S. A. Hashemi, M. Y. Kalashgrani, A. Gholami, M. Binazadeh, W. H. Chiang, and M. M. Rahman, Recent advances in energy storage with graphene oxide-for supercapacitor technology, Sustain. Energy Fuels, 7, 5176-5197 (2023). https://doi.org/10.1039/D3SE00867C
- K. Dujearic-Stephane, M. Gupta, A. Kumar, V. Sharma, S. Pandit, P. Bocchetta, and Y. Kumar, The effect of modifications of activated carbon materials on the capacitive performance: surface, microstructure, and wettability, J. Compos. Sci., 5, 66 (2021).
- S. Shi, X. Zhou, W. Chen, M. Chen, T. Nguyen, X. Wang, and W. Zhang, Improvement of structure and electrical conductivity of activated carbon by catalytic graphitization using N2 plasma pretreatment and iron (iii) loading, RSC Adv., 7, 44632-44638 (2017). https://doi.org/10.1039/C7RA07328C
- W. Zhou, Z. Liu, W. Chen, X. Sun, M. Luo, and X. Zhang, A review on thermal behaviors and thermal management systems for supercapacitors, Batteries, 9, 128 (2023).
- Y. I. Zhang, L. Zhang, and C. Zhou, Review of chemical vapor deposition of graphene and related applications, Acc. Chem. Res., 46, 2329-2339 (2013). https://doi.org/10.1021/ar300203n
- Y. L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, and W. Ren, Chemical vapor deposition of layered two-dimensional MoSi2N4 materials, Science, 369, 670-674 (2020). https://doi.org/10.1126/science.abb7023
- L. Zhou, L. R. Enakonda, M. Harb, Y., Saih, A. Aguilar-Tapia, S. Ould-Chikh, and J. M. Basset, Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials, Appl. Catal. B: Environ., 208, 44-59 (2017). https://doi.org/10.1016/j.apcatb.2017.02.052
- D. P. Serrano, J. A. Botas, J. L. Fierro, R. Guil-López, P. Pizarro, and G. Gómez, Hydrogen production by methane decomposition: origin of the catalytic activity of carbon materials, Fuel, 89, 1241-1248 (2010). https://doi.org/10.1016/j.fuel.2009.11.030
- A. Konieczny, K. Mondal, T. Wiltowski, and P. Dydo, Catalyst development for thermocatalytic decomposition of methane to hydrogen, Int. J. Hydrogen Energy., 33, 264-272 (2008).
- N. Muradov, F. Smith, and T. J. Ali, Catalytic activity of carbons for methane decomposition reaction, Catal. Today, 102, 225-233 (2005). https://doi.org/10.1016/j.cattod.2005.02.018
- J. S. Yun, J. H. Kim, S. C. Kang, and J. S. Im, Mechanism of activated carbon-catalyzed methane decomposition process for the production of hydrogen and high-value carbon, Carbon Lett., 33, 1799-1809 (2023). https://doi.org/10.1007/s42823-023-00516-0
- D. Dollimore, P. Spooner, and A. J. S. T. Turner, The BET method of analysis of gas adsorption data and its relevance to the calculation of surface areas, Surf. Technol., 4, 121-160 (1976). https://doi.org/10.1016/0376-4583(76)90024-8
- J. Schönherr, J. R. Buchheim, P. Scholz, and P. Adelhelm, Boehm titration revisited (part i): Practical aspects for achieving a high precision in quantifying oxygen-containing surface groups on carbon materials, C, 4, 21 (2018).
- J. Schönherr, J. R. Buchheim, P. Scholz, and P. Adelhelm, Boehm titration revisited (part ii): A comparison of boehm titration with other analytical techniques on the quantification of oxygen-containing surface groups for a variety of carbon materials, C, 4, 22 (2018).
- J. B. Choi, J. S. Im, S. C. Kang, Y. S. Lee, and C. W. Lee, Effect of metal–support interaction in Ni/SiO2 catalysts on the growth of carbon nanotubes by methane decomposition, Carbon Lett., 33, 477-488 (2023). https://doi.org/10.1007/s42823-022-00438-3
- I. H. Seong, S. C. Kang, J. D. Lee, and J. S. Im, Effect of active metals and process factors on the catalytic decomposition of methane for hydrogen production, Res. Chem. Intermed., 50, 1-18 (2024). https://doi.org/10.1007/s11164-023-05194-1
- P. R. Somani, S. P. Somani, and M. Umeno, Planer nano-graphenes from camphor by CVD, Chem. Phys. Lett., 430, 56-59 (2006). https://doi.org/10.1016/j.cplett.2006.06.081
- M. Y. Manawi, A. Samara, T. Al-Ansari, and M. A. Atieh, A review of carbon nanomaterials' synthesis via the chemical vapor deposition (CVD) method, Materials, 11, 822 (2018).
- A. R. Mohamed, M. Mohammadi, and G. N. Darzi, Preparation of carbon molecular sieve from lignocellulosic biomass: A review, Renew. Sustain. Energy Rev., 14, 1591-1599 (2010). https://doi.org/10.1016/j.rser.2010.01.024
- J. H. Lee, Y. M. Kang, and K. C. Roh, Enhanced pore formation in petroleum pitch using stabilization and synergistic steam/CO2 hybrid activation, Mater. Chem. Phys., 312, 128587 (2024).
- R. M. Firdaus, A. Desforges, M. Emo, A. R. Mohamed, and B. Vigolo, Physical and chemical activation of graphene-derived porous nanomaterials for post-combustion carbon dioxide capture, Nanomaterials, 11, 2419 (2021).
- G. Zhang, T. Guan, N. Wang, J. Wu, J. Wang, J. Qiao, and K. Li, Small mesopore engineering of pitch-based porous carbons toward enhanced supercapacitor performance, J. Chem. Eng., 399, 125818 (2020).
- K. Ishimaru, T. Hata, P. Bronsveld, T. Nishizawa, and Y. Imamura, Characterization of sp 2-and sp 3-bonded carbon in wood charcoal, J. Wood Sci., 53, 442-448 (2007). https://doi.org/10.1007/s10086-007-0879-7
- A. B. Fuertes, G. Lota, T. A. Centeno, and E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim. Acta, 50, 2799-2805 (2005). https://doi.org/10.1016/j.electacta.2004.11.027
- K. Guérin, J. P. Pinheiro, M. Dubois, Z. Fawal, F. Masin, R. Yazami, and A. Hamwi, Synthesis and characterization of highly fluorinated graphite containing sp2 and sp3 carbon, Chem. Mater., 16, 1786-1792 (2004). https://doi.org/10.1021/cm034974c
- B. A. García, A. Martínez-Alonso, C. Leon, and J. M. Tascón, Modification of the surface properties of an activated carbon by oxygen plasma treatment, Fuel, 77, 613-624 (1998). https://doi.org/10.1016/S0016-2361(97)00111-7
- S. Fasahat, M. Khosravi, G. Dini, A. Pino, and C. Logofatu, Microwave post-treated activated carbons for capacitance boosted non-aqueous supercapacitors, J. Alloys Compd., 984, 173948 (2024).
- P. R. Unwin, A. Guell, and G. Zhang, Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes, Acc. Chem. Res., 49, 2041-2048 (2016) https://doi.org/10.1021/acs.accounts.6b00301