DOI QR코드

DOI QR Code

Study of Methane CVD Process for Improving Conductivity and Controlling Functional Groups on Activated Carbon

활성탄의 전도성 향상 및 표면작용기 제어를 위한 메탄 CVD 공정 연구

  • Tae Ung Yoo (Hydrogen & C1 Gas Research Center, Korea Research Institute of Chemical Technology) ;
  • Hye In Hwang (Department Advanced Research and Development Team, VINA Tech) ;
  • Myoung Joon Hwang (Department Advanced Research and Development Team, VINA Tech) ;
  • Ji Sun Im (Hydrogen & C1 Gas Research Center, Korea Research Institute of Chemical Technology)
  • 유태웅 (한국화학연구원(KRICT) 수소C1가스연구센터) ;
  • 황혜인 (비나텍 R&D부문 선행개발팀) ;
  • 황명준 (비나텍 R&D부문 선행개발팀) ;
  • 임지선 (한국화학연구원(KRICT) 수소C1가스연구센터)
  • Received : 2024.09.06
  • Accepted : 2024.09.29
  • Published : 2024.12.10

Abstract

Methane chemical vapor deposition (CVD) was conducted to enhance the conductivity of activated carbon (AC) and control its surface functional groups. The effect of methane decomposition on the conductivity and surface functional groups of AC was investigated. Methane decomposition was treated on 5 g AC into a tubular reactor at 900 ℃, with reaction times ranging from 5 to 30 min. The conductivity of the AC after methane decomposition increased by 117%, and surface functional groups were controlled up to 85%. As the reaction time increased, the conductivity of AC increased and the surface functional group content decreased. ACs in the section where conductivity significantly increased after the reaction were selected and named according to reaction temperature and time, and changes in characteristics of AC were examined. As a result, the activated carbon surface carbon was converted from sp3 to sp2 structure by methane CVD, and the effects of improved conductivity and reduced surface functional groups were confirmed. In this study, we confirmed that the effects of the methane CVD reaction on improving the conductivity of AC and controlling surface functional groups. Moreover, the mechanism of AC surface treatment by methane decomposition was analyzed and discussed.

활성탄의 전도성 향상 및 표면작용기 제어를 위해 메탄 CVD를 실시하고, 메탄 분해가 활성탄의 전도성 및 표면작용기에 미치는 영향에 대해서 고찰하였다. 메탄 분해는 관형 반응기에 활성탄 5 g을 투입하고, 900 ℃에서 반응시간을 5~30 min으로 달리해 실시하였다. 메탄 분해 활성탄은 전도도가 117% 향상되었고, 표면작용기는 85%까지 제어되었다. 반응시간이 증가할수록 활성탄의 전도도가 증가하고, 표면작용기 함량은 감소하였다. 반응 후 전도도가 크게 증가하는 구간의 활성탄을 선정하여 반응온도-반응시간에 따라 명명하고 특성 변화에 대해 고찰하였다. 결과적으로 메탄 CVD에 의해 활성탄 표면 탄소가 sp3에서 sp2 구조로 전환되었고, 전도성 향상 및 표면작용기 감소 효과를 확인하였다. 본 연구에서는 메탄 CVD 반응이 활성탄의 전도성 향상 및 표면작용기 제어에 미치는 영향을 확인하고, 메탄 분해에 의한 활성탄 표면처리 메커니즘에 대해 분석 및 고찰하였다.

Keywords

Acknowledgement

본 연구는 (주)비나텍의 수탁연구과제(수퍼커패시터의 내구성 향상을 위한 활성탄 표면 처리 기술 개발)와 산업통상자원부의 민·군경용기술개발사업(민·군경용기술개발사업 : 24-CM-EE-01)의 지원을 받아 수행하였으며 이에 감사드립니다.

References

  1. S. Jarosław and D. Bartosz, Activated carbons—Preparation, characterization and their application in CO2 capture: A review, Environ. Sci. Pollut. Res., 31, 40008-40062 (2024).
  2. Q. Weichen, Y. Dong, H. Jiang, W. Loh, and H. Imbrongo, A new approach of simultaneous adsorption and regeneration of activated carbon to address the bottlenecks of pharmaceutical wastewater treatment, Water Res., 252, 121180 (2024).
  3. Y. Neolaka, A. Riwu, U. Aigbe, O. Ukhurebor, R. Onyancha, H. Darmokoesoemo, and H. Kusuma, Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes, Results Chem., 5, 100711 (2023).
  4. X. He, D. Bresser, S. Passerini, F. Baakes, U. Krewer, J. Lopez, and R. Kostecki, The passivity of lithium electrodes in liquid electrolytes for secondary batteries, Nat. Rev. Mater., 6, 1036-1052 (2021). https://doi.org/10.1038/s41578-021-00345-5
  5. F. Wu, Y. Liu, Y. Li, X. Feng, K. Zhang, Y. Bai, and C. Wu, High-mass-loading electrodes for advanced secondary batteries and supercapacitors, Electrochem. Energy Rev., 4, 382-446 (2021). https://doi.org/10.1007/s41918-020-00093-0
  6. Y. Zhao, O. Pohl, A. Bhatt, I. Collis, P. Mahon, T. Rüther, and A. Hollenkamp, A review on battery market trends, second-life reuse, and recycling, Sustain. Chem., 2, 167-205 (2021). https://doi.org/10.3390/suschem2010011
  7. P. Dubey, V. Shrivastav, P. Maheshwari, and S. Sundriyal, Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: Challenges and opportunities, Carbon, 170, 1-29 (2020). https://doi.org/10.1016/j.carbon.2020.07.056
  8. F. Liu, M. Liu, Y. Li, X. Feng, K. Zhang, Y. Bai, and C. Wu, High-mass-loading electrodes for advanced secondary batteries and supercapacitors, Electrochem. Energy Rev., 4, 382-446 (2021). https://doi.org/10.1007/s41918-020-00093-0
  9. F. Cheng, X. Yang, S. Zhang, and W. Lu, Boosting the supercapacitor performances of activated carbon with carbon nanomaterials, J. Power Sources, 450, 227678 (2020).
  10. S. Sundriyal, V. Shrivastav, H. Pham, D. Mishra, and P. Dubal, Advances in bio-waste derived activated carbon for supercapacitors: Trends, challenges and prospective, Resour. Conserv. Recycl., 169, 105548 (2021).
  11. C. Jiang, G. Yakaboylu, T. Yumak, J. Zondlo, E. Sabolsky, and J. Wang, Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes, Renew. Energy, 155, 38-52 (2020). https://doi.org/10.1016/j.renene.2020.03.111
  12. I. Inal and Z. Aktas, Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment, Appl. Surf. Sci., 514, 145895 (2020).
  13. F. Cheng, X. Yang, S. Zhang, and W. Lu, Boosting the supercapacitor performances of activated carbon with carbon nanomaterials, J. Power Sources, 450, 227678 (2020).
  14. M. I. Kim, J. S. Im, S. W. Seo, J. H. Cho, and Y. S, Lee, Preparation of pitch-based activated carbon with surface-treated fly ash for SO2 gas removal, Carbon Lett., 30, 381-387 (2020). https://doi.org/10.1007/s42823-019-00107-y
  15. J.H. Kim, Y.J. Choi, J. S. Im, and B. C. Bai, Study of activation mechanism for dual model pore structured carbon based on effects of molecular weight of petroleum pitch, J. Ind. Eng. Chem., 88, 251-259 (2020). https://doi.org/10.1016/j.jiec.2020.04.022
  16. Z. Heidarinejad, M. Dehghani, M. Heidari, G., Javedan, I. Ali, and M. Sillanpää, Methods for preparation and activation of activated carbon: A review, Environ. Chem. Lett., 18, 393-415 (2020). https://doi.org/10.1007/s10311-019-00955-0
  17. S. Yaglikci, Y. Gokce, E. Yagmur, and Z. Aktas, The performance of sulphur doped activated carbon supercapacitors prepared from waste tea, Environ. Technol., 41, 36-48 (2020). https://doi.org/10.1080/09593330.2019.1575480
  18. D. Gandla, X. Wu, F. Zhang, C. Wu, and D. Q. Tan, High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels, ACS Omega, 6, 7615-7625 (2021). https://doi.org/10.1021/acsomega.0c06171
  19. S. M. Mousavi, S. A. Hashemi, M. Y. Kalashgrani, A. Gholami, M. Binazadeh, W. H. Chiang, and M. M. Rahman, Recent advances in energy storage with graphene oxide-for supercapacitor technology, Sustain. Energy Fuels, 7, 5176-5197 (2023). https://doi.org/10.1039/D3SE00867C
  20. K. Dujearic-Stephane, M. Gupta, A. Kumar, V. Sharma, S. Pandit, P. Bocchetta, and Y. Kumar, The effect of modifications of activated carbon materials on the capacitive performance: surface, microstructure, and wettability, J. Compos. Sci., 5, 66 (2021).
  21. S. Shi, X. Zhou, W. Chen, M. Chen, T. Nguyen, X. Wang, and W. Zhang, Improvement of structure and electrical conductivity of activated carbon by catalytic graphitization using N2 plasma pretreatment and iron (iii) loading, RSC Adv., 7, 44632-44638 (2017). https://doi.org/10.1039/C7RA07328C
  22. W. Zhou, Z. Liu, W. Chen, X. Sun, M. Luo, and X. Zhang, A review on thermal behaviors and thermal management systems for supercapacitors, Batteries, 9, 128 (2023).
  23. Y. I. Zhang, L. Zhang, and C. Zhou, Review of chemical vapor deposition of graphene and related applications, Acc. Chem. Res., 46, 2329-2339 (2013). https://doi.org/10.1021/ar300203n
  24. Y. L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, and W. Ren, Chemical vapor deposition of layered two-dimensional MoSi2N4 materials, Science, 369, 670-674 (2020). https://doi.org/10.1126/science.abb7023
  25. L. Zhou, L. R. Enakonda, M. Harb, Y., Saih, A. Aguilar-Tapia, S. Ould-Chikh, and J. M. Basset, Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials, Appl. Catal. B: Environ., 208, 44-59 (2017). https://doi.org/10.1016/j.apcatb.2017.02.052
  26. D. P. Serrano, J. A. Botas, J. L. Fierro, R. Guil-López, P. Pizarro, and G. Gómez, Hydrogen production by methane decomposition: origin of the catalytic activity of carbon materials, Fuel, 89, 1241-1248 (2010). https://doi.org/10.1016/j.fuel.2009.11.030
  27. A. Konieczny, K. Mondal, T. Wiltowski, and P. Dydo, Catalyst development for thermocatalytic decomposition of methane to hydrogen, Int. J. Hydrogen Energy., 33, 264-272 (2008).
  28. N. Muradov, F. Smith, and T. J. Ali, Catalytic activity of carbons for methane decomposition reaction, Catal. Today, 102, 225-233 (2005). https://doi.org/10.1016/j.cattod.2005.02.018
  29. J. S. Yun, J. H. Kim, S. C. Kang, and J. S. Im, Mechanism of activated carbon-catalyzed methane decomposition process for the production of hydrogen and high-value carbon, Carbon Lett., 33, 1799-1809 (2023). https://doi.org/10.1007/s42823-023-00516-0
  30. D. Dollimore, P. Spooner, and A. J. S. T. Turner, The BET method of analysis of gas adsorption data and its relevance to the calculation of surface areas, Surf. Technol., 4, 121-160 (1976). https://doi.org/10.1016/0376-4583(76)90024-8
  31. J. Schönherr, J. R. Buchheim, P. Scholz, and P. Adelhelm, Boehm titration revisited (part i): Practical aspects for achieving a high precision in quantifying oxygen-containing surface groups on carbon materials, C, 4, 21 (2018).
  32. J. Schönherr, J. R. Buchheim, P. Scholz, and P. Adelhelm, Boehm titration revisited (part ii): A comparison of boehm titration with other analytical techniques on the quantification of oxygen-containing surface groups for a variety of carbon materials, C, 4, 22 (2018).
  33. J. B. Choi, J. S. Im, S. C. Kang, Y. S. Lee, and C. W. Lee, Effect of metal–support interaction in Ni/SiO2 catalysts on the growth of carbon nanotubes by methane decomposition, Carbon Lett., 33, 477-488 (2023). https://doi.org/10.1007/s42823-022-00438-3
  34. I. H. Seong, S. C. Kang, J. D. Lee, and J. S. Im, Effect of active metals and process factors on the catalytic decomposition of methane for hydrogen production, Res. Chem. Intermed., 50, 1-18 (2024). https://doi.org/10.1007/s11164-023-05194-1
  35. P. R. Somani, S. P. Somani, and M. Umeno, Planer nano-graphenes from camphor by CVD, Chem. Phys. Lett., 430, 56-59 (2006). https://doi.org/10.1016/j.cplett.2006.06.081
  36. M. Y. Manawi, A. Samara, T. Al-Ansari, and M. A. Atieh, A review of carbon nanomaterials' synthesis via the chemical vapor deposition (CVD) method, Materials, 11, 822 (2018).
  37. A. R. Mohamed, M. Mohammadi, and G. N. Darzi, Preparation of carbon molecular sieve from lignocellulosic biomass: A review, Renew. Sustain. Energy Rev., 14, 1591-1599 (2010). https://doi.org/10.1016/j.rser.2010.01.024
  38. J. H. Lee, Y. M. Kang, and K. C. Roh, Enhanced pore formation in petroleum pitch using stabilization and synergistic steam/CO2 hybrid activation, Mater. Chem. Phys., 312, 128587 (2024).
  39. R. M. Firdaus, A. Desforges, M. Emo, A. R. Mohamed, and B. Vigolo, Physical and chemical activation of graphene-derived porous nanomaterials for post-combustion carbon dioxide capture, Nanomaterials, 11, 2419 (2021).
  40. G. Zhang, T. Guan, N. Wang, J. Wu, J. Wang, J. Qiao, and K. Li, Small mesopore engineering of pitch-based porous carbons toward enhanced supercapacitor performance, J. Chem. Eng., 399, 125818 (2020).
  41. K. Ishimaru, T. Hata, P. Bronsveld, T. Nishizawa, and Y. Imamura, Characterization of sp 2-and sp 3-bonded carbon in wood charcoal, J. Wood Sci., 53, 442-448 (2007). https://doi.org/10.1007/s10086-007-0879-7
  42. A. B. Fuertes, G. Lota, T. A. Centeno, and E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim. Acta, 50, 2799-2805 (2005). https://doi.org/10.1016/j.electacta.2004.11.027
  43. K. Guérin, J. P. Pinheiro, M. Dubois, Z. Fawal, F. Masin, R. Yazami, and A. Hamwi, Synthesis and characterization of highly fluorinated graphite containing sp2 and sp3 carbon, Chem. Mater., 16, 1786-1792 (2004). https://doi.org/10.1021/cm034974c
  44. B. A. García, A. Martínez-Alonso, C. Leon, and J. M. Tascón, Modification of the surface properties of an activated carbon by oxygen plasma treatment, Fuel, 77, 613-624 (1998). https://doi.org/10.1016/S0016-2361(97)00111-7
  45. S. Fasahat, M. Khosravi, G. Dini, A. Pino, and C. Logofatu, Microwave post-treated activated carbons for capacitance boosted non-aqueous supercapacitors, J. Alloys Compd., 984, 173948 (2024).
  46. P. R. Unwin, A. Guell, and G. Zhang, Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes, Acc. Chem. Res., 49, 2041-2048 (2016) https://doi.org/10.1021/acs.accounts.6b00301