DOI QR코드

DOI QR Code

Analysis of Adhesion Force and Adhesive Energy of Ag Thin Films under Pressure Conditions Using Nanoscratch Test

나노스크래치 테스트를 활용한 가압 조건에 따른 Ag 박막의 접합력 및 접합에너지 분석

  • YeonKyeong Park (School of Materials Science and Engineering, University of Ulsan) ;
  • Jun-Hyuk Choi (Nano-lithography & Manufacturing Research Center, Korea Institute of Machinery & Materials) ;
  • Dae-Geun Choi (Nano-lithography & Manufacturing Research Center, Korea Institute of Machinery & Materials) ;
  • Joo-Yun Jung (Nano-lithography & Manufacturing Research Center, Korea Institute of Machinery & Materials) ;
  • Eun-chae Jeon (School of Materials Science and Engineering, University of Ulsan)
  • 박연경 (울산대학교 첨단소재공학부) ;
  • 최준혁 (한국기계연구원 나노리소그래피연구센터) ;
  • 최대근 (한국기계연구원 나노리소그래피연구센터) ;
  • 정주연 (한국기계연구원 나노리소그래피연구센터) ;
  • 전은채 (울산대학교 첨단소재공학부)
  • Received : 2024.11.02
  • Accepted : 2024.11.18
  • Published : 2024.12.10

Abstract

The demand for ultra-high-resolution organic light-emitting diodes (OLED) continues to rise, thereby driving extensive research into transfer processes aimed at overcoming the physical limitations of conventional deposition methods. As a process that transfers target materials from a transfer mold to a substrate, the transfer process requires the adhesion between the target material and the substrate to exceed the adhesion of the transfer mold for effective bonding. To achieve this, pressure is often applied during transfer; however, excessive pressure can potentially damage the device, making it essential to thoroughly analyze the adhesion between the target material and substrate under varying applied pressure. In this study, nanoscratch testing, capable of detailed quantitative nanoscale analysis, was employed to evaluate the adhesion and adhesion energy between the target material and substrate in OLED devices subjected to different pressures. As a result, the adhesion significantly increased under an applied pressure of 5 bar compared to conditions without applied pressure or with 1 bar of pressure, with no delamination occurring until the Si substrate fractured. The fracture loads varied among specimens without delamination, enabling a quantitative comparison of adhesion. These findings confirm that applying appropriate pressure during the transfer process can produce devices with superior adhesion compared to deposition methods.

초고해상도 organic light-emitting diode (OLED)의 수요가 꾸준히 증가하면서 기존 증착 공정의 물리적인 한계를 극복하기 위해 전사 공정을 활용한 연구들이 활발히 진행되고 있다. 전사 공정은 전사 몰드 위의 타깃 물질을 기판으로 옮기는 공정이므로 전사 기판과 타깃 물질 간의 접합력이 전사 몰드의 접합력보다 높아야 한다. 이를 위해 전사 시 압력을 인가하는 경우가 많은데, 너무 높은 압력은 소자에 손상을 줄 수 있으므로 인가 압력에 따른 타깃 물질과 기판간 접합력 분석이 필요하다. 이에 본 연구에서는 나노스케일에 대한 정량적인 분석이 가능한 나노스크래치 테스트를 활용하여 OLED용 소자에 인가 압력에 따른 타깃 물질과 기판 간의 접합력 및 접합에너지를 분석하였다. 그 결과, 압력을 인가하지 않거나 1 bar의 압력을 인가하였을 때보다 5 bar의 압력을 인가하였을 때 접합력이 월등히 증가하여 Si 기판이 파괴될 때까지 박리가 발생하지 않았다. 이때, 박리가 발생하지 않은 시편들의 기판 파괴 하중이 서로 달랐으며 이 차이를 사용하여 접합력을 정량적으로 비교하였다. 이를 통해 전사 공정 시 적절하게 압력을 인가하면 증착 공정보다 더 우수한 접합력을 갖는 소자를 제작할 수 있음을 확인하였다.

Keywords

Acknowledgement

본 연구는 2024년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임. (과제번호: 20019400, 과제명: 초고해상도 구현을 위한 OLED 디스플레이용 메타 표면 구조 설계제조 기술개발)

References

  1. C. Kang and H. Lee, Recent progress of organic light-emitting diode microdisplays for augmented reality/virtual reality applications. J. Inf. Disp., 23, 19-32 (2022). https://doi.org/10.1080/15980316.2021.1917461
  2. J. Bauri, R. B. Choudhary, and G. Mandal, Recent advances in efficient emissive materials-based OLED applications: a review, J. Mater. Sci., 56, 18837-18866 (2021). https://doi.org/10.1007/s10853-021-06503-y
  3. U. Vogel, B. Richter, P. Wartenberg, P. Konig, O. R. Hild, K. Fehse, and B. Beyer, OLED microdisplays in near-to-eye applica-tions: Challenges and solutions, Proceedings of Digital Optical Technologies. June 26-28, Munich, Germany (2017). Munich, Germany
  4. B. Geffroy, P. Le Roy, and C. Prat, Organic light‐emitting diode (OLED) technology: Materials, devices and display technologies, Polym. Int., 55, 572-582 (2006). https://doi.org/10.1002/pi.1974
  5. T. Fuiji, C. Kon, Y. Motoyama, K. Shimizu, T. Shimayama, T. Yamazaki, and Y. Nakano, 4032 ppi high‐resolution OLED microdisplay, J. Soc. Info. Disp., 26, 178-186 (2018). https://doi.org/10.1002/jsid.656
  6. M. Pfeiffer, Electrophosphorescent p–i–n organic light‐emitting devices for very‐high‐efficiency flat‐panel displays, J. Adv. Mater., 14, 1633-1636 (2002). https://doi.org/10.1002/1521-4095(20021118)14:22<1633::AID-ADMA1633>3.0.CO;2-#
  7. S. Lee, J. H. Han, S. H. Lee, G. H. Baek, and J. S. Park, Review of organic/inorganic thin film encapsulation by atomic layer deposition for a flexible OLED display, JOM, 71, 197-211 (2019). https://doi.org/10.1007/s11837-018-3150-3
  8. A. Islam, M. Rabbani, M. H. Bappy, M. A. R. Miah, and N. Sakib, A review on fabrication process of organic light emitting diodes, Proceedings of 2013 International Conference on Informatics, Electronics & Vision (ICIEV). May 17-18, Dhaka, Bangladesh (2013).
  9. S. I. Kim, K. W. Lee, B. B. Sahu, and J. G. Han, Flexible OLED fabrication with ITO thin film on polymer substrate, Jpn. J. Appl. Phys., 54, 090301 (2015).
  10. M. Eritt, C. May, K. Leo, M. Toerker, and C. Radehaus, OLED manufacturing for large area lighting applications, Thin Solid Films, 518, 3042-3045 (2010). https://doi.org/10.1016/j.tsf.2009.09.188
  11. J. L. Liao, P. Rajakannu, P. Gnanasekaran, S. R. Tsai, C. H. Lin, S. H. Liu, and Y. Chi, Luminescent diiridium complexes with bridging pyrazolates: Characterization and fabrication of OLEDs using vacuum thermal deposition, Adv. Opt. Mater., 6, 1800083
  12. C. W. Han, J. S. Park, H. S. Choi, T. S. Kim, Y. H. Shin, H. J. Shin, and B. C. Ahn, Advanced technologies for UHD curved OLED TV, J. Soc. Info. Disp., 22, 552-563 (2014). https://doi.org/10.1002/jsid.287
  13. M. T. Lee, S. M. Shen, Z. X. Weng, J. J. Fu, C. L. Chen, C. S. Chuang, and Y. Lin, One FMM solution for achieving active‐matrix OLED with 413ppi real pixel density, SID Symp. Dig. Technol., 45, 573-575 (2014).
  14. W. Song, J. You, C. Y. Wu, L. Wang, Y. Shen, B. Bo, Z. Wu, 3 stacked top‐emitting white OLEDs with super wide color gamut and high efficiency, SID Symp. Dig. Technol., 50, 46-49 (2019).
  15. Z. Pan, C. Guo, X. Wang, J. Liu, R. Cao, Y. Gong, and Z. Gong, Wafer‐scale micro‐LEDs transferred onto an adhesive film for planar and flexible displays, Adv. Mater. Technol., 5, 2000549 (2020).
  16. S. I. Park, Y. Xiong, R. H. Kim, P. Elvikis, M. Meitl, D. H. Kim, and J. A. Rogers, Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays, Science, 325, 977-981 (2009). https://doi.org/10.1126/science.1175690
  17. M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, and D. H. Kim, Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing, Nat. Commun., 6, 7149 (2015).
  18. A. Jarvey, Nam, R. S. Friedman, H. Yan, and C. M. Lieber, Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics, Nano Lett., 7, 773-777 (2007). https://doi.org/10.1021/nl063056l
  19. T. W. Park, M. Byun, H. Jung, G. R. Lee, J. H. Park, H. I. Jang, and W. I. Park, Thermally assisted nanotransfer printing with sub–20-nm resolution and 8-inch wafer scalability, Sci. Adv., 6, eabb6462 (2020).
  20. D. K. Oh, T. Lee, B. Ko, T. Badloe, J. G. Ok, and J. Rho, Nanoimprint lithography for high-throughput fabrication of metasurfaces, Front. Optoelectron., 14, 229-251 (2021). https://doi.org/10.1007/s12200-021-1121-8
  21. F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, Wave propagation control at the deep subwavelength scale in metamaterials, Nat. Phys., 9, 55-60 (2013). https://doi.org/10.1038/nphys2480
  22. C. W. Lee, H. J. Choi, and H. Jeong, Tunable metasurfaces for visible and SWIR applications, Nano Converg., 7, 3-13 (2020). https://doi.org/10.1186/s40580-019-0213-2
  23. Z. Fusco, M. Rahmani, R. Bo, T. Tran-Phu, M. Lockey, N. Motta, D. Neshev, and A. Tricoli, High-temperature large-scale self-assembly of highly faceted monocrystalline Au metasurfaces, Adv. Funct. Mater., 29, 1806387 (2019).
  24. M. Meudt, T. Jakob, A. Polywka, L. Stegers, S. Kropp, S. Runke, M. Zang, M. Clemens, and P. Görrn, Plasmonic black metasurface by transfer printing, Adv. Mater. Technol., 3, 1800124 (2018).
  25. R. H. Siddique, S. Kumar, V. Narasimhan, H. Kwon, and H. Choo, Aluminum metasurface with hybrid multipolar plasmons for 1000-fold broadband visible fluorescence enhancement and multiplexed biosensing, ACS Nano, 13, 13775-13783 (2019). https://doi.org/10.1021/acsnano.9b02926
  26. W.-J. Joo, J. Kyoung, M. Esfandyarpour, S.-H. Lee, H. Koo, S. Song, Y.-N. Kwon, S. H. Song, J. C. Bae, A. Jo, M.-J. Kwon, S. H. Han, S.-H. Kim, S. Hwang, and M. L. Brongersma, Metasurface driven OLED displays beyond 10,000 pixels per inch, Science, 370, 459-463 (2020). https://doi.org/10.1126/science.abc8530
  27. ASTM International, ASTM D903: Standard Test Method for Peel or Stripping Strength of Adhesive Bonds (2017).
  28. ASTM International, ASTM D3359: Standard Test Methods for Rating Adhesion by Tape Test (2023).
  29. S. J. Bull, Failure modes in scratch adhesion testing, Surf. Coat. Technol., 50, 25-32 (1991). https://doi.org/10.1016/0257-8972(91)90188-3
  30. D. H. Choi, J. R. Lee, N. -R. Kang, T. -J. Je, J. -Y. Kim, and E. -c. Jeon, Study on ductile mode machining of single-crystal silicon by mechanical machining, Int. J. Mach. Tools Manuf., 113, 1-9 (2017). https://doi.org/10.1016/j.ijmachtools.2016.10.006
  31. N. Panich and Y. Sun, Mechanical properties of TiB2-based nanostructured coatings, Surf. Coat. Technol., 198, 14-19 (2005) https://doi.org/10.1016/j.surfcoat.2004.10.096