Acknowledgement
This work was supported by project for Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups in RS-2023-00224451.
References
- Black ice Available: www. en.wikipedia.org/wiki/Black_ice.
- E. S. Rodland, E. D. Okoffo, C. Rauert, L. S. Heier, O. C. Lind, M. Reid, K. V. Thomas, and S. Meland, Road de-icing salt: Assessment of a potential new source and pathway of micro-plastics particles from roads, Sci. Total Environ., 738, 139352 (2020).
- T. M. Phan, D. W. Park, and H. S. Kim, Utilization of micro encapsulated phase change material in asphalt concrete for improving low-temperature properties and delaying black ice, Constr. Build. Mater., 330, 127262 (2022).
- S. Szklarek, A. Górecka, and A. Wojtal-Frankiewicz, The effects of road salt on freshwater ecosystems and solutions for mitigating chloride pollution -A review, Sci. Total Environ., 805, 150289 (2022).
- H. Chen, Y. Wu, H. Xia, B. Jing, and Q. Zhang, Review of ice-pavement adhesion study and development of hydrophobic surface in pavement deicing, J. Traffic Transp. Eng. (Eng. Ed.), 5, 224-238 (2018).
- Z. Li, A. Zhu, Y. Zhan, Z. Luo, and A. A. Zhang, Novel asphalt pavement with directional heat conduction for melting of ice and snow in plateau and cold areas, Intell. Transp. Infrastruct., 2, 1-10, (2023). https://doi.org/10.1093/iti/liad010
- M. Yang, X. Zhang, X. Zhou, B. Liu, X. Wang, and X. Lin, Research and exploration of phase change materials on solar pavement and asphalt pavement: A review, J. Energy Storage, 35, 102246 (2021).
- K. Wei, Z. Liu, L. Wang, B. Ma, Y. Fan, J. Shi, and P. Cheng, Preparation of polyurethane solid-solid low temperature PCMs granular asphalt mixes and study of phase change temperature control behavior, Sol. Energy, 231, 149157 (2022).
- K. W. Park and B. C. Cho, Discovering and preventing black ice using AI and big data base-RR-21-08, Korea transport institute, Seoul, South Korea (2021).
- W. Sun, H. Li, H. Wang, S. Xiao, J. Wang, L. Feng, Sensitivity enhancement of pH indicator and its application in the evaluation of fish freshness, Talanta, 143, 127-131 (2015). https://doi.org/10.1016/j.talanta.2015.05.021
- S. Isabettini, S. Stucki, S. Massabni, M. E. Baumgartner, P. Q. Reckey, J. Kohlbrecher, T. Ishikawa, E. J. Windhab, P. Fischer, and S. Kuster, Development of smart optical gels with highly magnetically responsive bicelles, ACS Appl. Mater. Interfaces, 10, 8926-8936 (2018). https://doi.org/10.1021/acsami.7b17134
- W. Qiu, P. A. Gurr, G. da Silva, and G. G. Qiao, Insights into the mechanochromism of spiropyran elastomers, Polym. Chem., 10, 1650-1659 (2019). https://doi.org/10.1039/C9PY00017H
- K. Basnec, L. S. Pers, B. Sumiga, M. Huskic, A. Meden, A. Hladnik, B.B. Podgornik, and M. K. Gunde, Relation between colourand phase changes of a leuco dye-based thermochromic composite, Sci. Rep., 8, 5511 (2018).
- I. Sage, Thermochromic liquid crystals in device, Liq. Cryst., 38, 1551-1561 (2011). https://doi.org/10.1080/02678292.2011.631302
- H. Tamaki, H. Watanabe, S. Kamiyama, Y. Oaki, and H. Imai, Size-dependent thermochromism through enhanced electron−phonon coupling in 1 nm quantum dots, Angew. Chem. Int. Ed., 53, 10706-10709 (2014). https://doi.org/10.1002/anie.201406330
- M. Mitsuishi, Y. Koishikawa, H. Tanaka, E. Sato, T. Mikayama, J. Matsui, and T. Miyashita, Nanoscale actuation of thermoreversible polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles, Langmuir, 23, 7472-7474 (2007). https://doi.org/10.1021/la701215t
- A. Seeboth, J. Kriwanek, and R. Vetter, The first example of thermochromism of dyes embedded in transparent polymer gel networks, J. Mater. Chem., 9, 2277-2278 (1999). https://doi.org/10.1039/a906159b
- Y. Zhang, Z. Hu, H. Xiang, G. Zhai, and M Zhu, Fabrication of visual textile temperature indicators based on reversible thermochromic fibers, Dyes Pigm., 162, 705-711 (2019). https://doi.org/10.1016/j.dyepig.2018.11.007
- X. Geng, W. Li, Q. Yin, Y. Wang, N. Han, N. Wang, J. Bian, J. Wang, and X.; Zhang, Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity, Energy, 159, 857-869 (2018). https://doi.org/10.1016/j.energy.2018.06.218
- S. Burkinshaw and A.Towns, Reversibly thermochromic systems based on pH-sensitive functional dyes, J. Mater. Chem., 8, 2677-2683 (1998). https://doi.org/10.1039/a805994b
- W. Zhang, X. Ji, C. Zeng, K. Chen, Y. Yin, and C. Wang, A new approach for the preparation of durable and reversible color changing polyester fabrics using thermochromic leuco dye-loaded silica nanocapsules, J. Mater. Chem. C, 5, 8169-8178 (2017). https://doi.org/10.1039/C7TC02077E
- B. Liu, H. Ranji-Burachaloo, P. A. Gurr, E. Goudeli, and G. G. Qiao, A nontoxic reversible thermochromic binary system via π–π stacking of sulfonephthaleins, J. Mater. Chem. C, 7, 9335-9345 (2019). https://doi.org/10.1039/C9TC02071C
- O. Panák, M. Držková, and M, Kaplanová,. Insight into the evaluation of colour changes of leuco dye based thermochromic systems as a function of temperature, Dyes Pigm., 120, 279-287 (2015). https://doi.org/10.1016/j.dyepig.2015.04.022
- S. Meiqin, S. Yun, and T. Qiyu, Synthesis of fluoran dyes with improved properties, Dyes Pigm., 29, 45-55 (1995) https://doi.org/10.1016/0143-7208(95)00019-C