DOI QR코드

DOI QR Code

Recent Research Trends in CO2 Methanation Catalysts: Focusing on Ni/CeO2

이산화탄소 메탄화 촉매의 최근 연구 동향: Ni/CeO2를 중심으로

  • Ye Hwan Lee (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Hyeonsu Jeong (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Sung Su Kim (Department of Social Energy System Engineering, Kyonggi University)
  • 이예환 (경기대학교 환경에너지공학과) ;
  • 정현수 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 사회에너지시스템공학과)
  • Received : 2024.09.13
  • Accepted : 2024.10.23
  • Published : 2024.12.10

Abstract

CO2 methanation is attracting attention as a solution for carbon neutrality and an alternative to fossil fuel depletion. It is also promising as a power to gas (P2G) technology that can store residual energy that occurs intermittently due to the expansion of renewable energy. In this review, we investigated recent research trends on Ni/CeO2 catalysts, which exhibit high activity at low temperatures among various catalysts for CO2 methanation. In particular, by comparing the morphological characteristics, specific surface area, and reducibility of the catalysts that can affect the methanation performance, the main factors of the catalysts were organized, and the key factors were proposed. In addition, various proposals for the mechanism of the methanation reaction were reviewed, and the research direction for the future development of Ni/CeO2 catalysts was suggested.

이산화탄소의 메탄화는 탄소중립을 위한 솔루션이자 화석연료 고갈의 대안으로 주목받고 있다. 이뿐만 아니라 재생에너지의 확대 속에 간헐적으로 발생하는 잉여에너지를 저장할 수 있는 power to gas (P2G) 기술로도 유망하다. 본 총설에서는 이산화탄소의 메탄화 반응을 위한 다양한 촉매 중에 저온에서 높은 활성을 나타내는 Ni/CeO2 촉매의 최근 연구 동향을 조사하였다. 특히 메탄화 성능에 영향을 미칠 수 있는 촉매의 형태적 특성, 비표면적, 환원성 등을 비교함으로써 촉매의 주요 인자를 정리하고 핵심 인자를 제안하였다. 또한 메탄화 반응의 메커니즘에 대한 다양한 제안을 검토하고, 향후 Ni/CeO2 촉매의 발전을 위한 연구 방향을 제시하였다.

Keywords

Acknowledgement

본 연구는 한국환경산업기술원의 대기 환경산업 경쟁력 강화 국산화 기술 개발사업을 지원받아 수행된 연구로 이에 감사드립니다(No. RS-2023-00220022).

References

  1. I. Hussain, G. Tanimu, S. Ahmed, C. U. Aniz, H. Alasiri, and K. Alhooshani, A review of the indispensable role of oxygen vacancies for enhanced CO2 methanation activity over CeO2-based catalysts: Uncovering, influencing, and tuning strategies, Int. J. Hydrogen Energy, 48, 24663-24696 (2023). https://doi.org/10.1016/j.ijhydene.2022.08.086
  2. Y. Yoo, H. Choi, J. H. Bang, S. Chae, J. W. Kim, J. M. Kim, and S. W. Lee, CO2 sequestration and utilization of calcium-extracted slag using air-cooled blast furnace slag and convert slag, Appl. Chem. Eng., 28, 101-111 (2017).
  3. S. C. Chae, Y. N. Jang, and K. W. Ryu, Mineral carbonation as a sequestration method of CO2, J. Geol. Soc. Korea, 45, 527-555 (2009).
  4. J. Lee, B. J. Kim, S. H. Shin, N. S. Kwak, D. W. Lee, J. H. Lee, and J. G. Shim, 0.1 MW test bed CO2 capture studies with new absorbent (KoSol-5), Appl. Chem. Eng., 27, 391-396 (2016). https://doi.org/10.14478/ace.2016.1046
  5. Y. H. Lee, S. H. Lee, I. H. Hwang, S. Y. Choi, S. M. Lee, and S. S. Kim, A study on the calcium ion extraction for PCC production, Appl. Chem. Eng., 29, 43-48 (2018).
  6. S. H. Cho, B. C. Bai, H. R. Yu, and Y. S. Lee, Carbon capture and CO2/CH4 separation technique using porous carbon materials, Appl. Chem. Eng., 22, 343-347 (2011).
  7. R. Lee and J. M. Sohn, Study on CO2-coal gasification reaction using natural mineral catalysts, Appl. Chem. Eng., 27, 56-61 (2016). https://doi.org/10.14478/ace.2015.1122
  8. H. Ji, K. Naveen, D. Kim, and D. H. Cho, Catalytic application of metal-organic frameworks for chemical fixation of CO2 into cyclic carbonate, Appl. Chem. Eng., 31, 258-266 (2020).
  9. T. K. Kim and W. G. Lee, Conveision characteristics of CH4 and CO2 in an atmospheric pressure plasma reactor, Appl. Chem. Eng., 22, 653-657 (2011).
  10. D. C. Lee, J. B. Kim, and Y. J. You, Preparation of honeycomb carbon dioxide adsorbent impregnated K2CO3 and its characterization, Appl. Chem. Eng., 23, 624-629 (2012).
  11. Y. He, H. Shen, Y. Bai, X. Niu, Y. Zhao, C. Wu, S. Yang, Y. Cao, Q. Zhang, and H. Zhang, Construction of the low-loading Ni/CeO2 catalyst with a boosted CO2 methanation performance via the facile pyrolysis CeO2 support, Ind. Eng. Chem. Res., 61, 15948-15960 (2022). https://doi.org/10.1021/acs.iecr.2c02822
  12. X. Chen, Y. He, X. Cui, and L. Liu, High value utilization of waste blast furnace slag: New Ni-CeO2/hBFS catalyst for low temperature CO2 methanation, Fuel, 338, 127309-127319 (2023). https://doi.org/10.1016/j.fuel.2022.127309
  13. S. Chen, C. Miao, L. Liang, and J. Ouyang, Oxygen vacanciesmediated CO methanation over Ni/CeO2-ZrO solid solutions assembled on clay minerals, Energy Fuels, 36, 8340-8350 (2022). https://doi.org/10.1021/acs.energyfuels.2c01421
  14. Z. Lv, H. Du, S. Xu, T. Deng, J. Ruan, and C. Qin, Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation, Appl. Energy, 355, 122242-122250 (2024). https://doi.org/10.1016/j.apenergy.2023.122242
  15. V. Golovanova, M. C. Spadaro, J. Arbiol, V. Golovanov, T. T. Rantala, T. Andreu, and J. R. Morante, Effects of solar irradiation on thermally driven CO2 methanation using Ni/CeO2–based catalyst, Appl. Catal. B, 291, 120038-120049 (2021). https://doi.org/10.1016/j.apcatb.2021.120038
  16. T. Zhang, W. Wang, F. Gu, W. Xu, J. Zhang, Z. Li, T. Zhu, G. Xu, Z. Zhong, and F. Su, Enhancing the low-temperature CO2 methanation over Ni/La-CeO2 catalyst: The effects of surface oxygen vacancy and basic site on the catalytic performance, Appl. Catal. B, 312, 121385-121400 (2022). https://doi.org/10.1016/j.apcatb.2022.121385
  17. J. D. Park, T. H. Kim, B. H. An, J. S. Che, and T. S. Park, Study on the stability of power supply in power systems with intermittent renewable energy using VFT, J. Korean Inst. IIIum. Electr. Install. Eng., 38, 67-73 (2024).
  18. N. García-Moncada, J. C. Navarro, J. A. Odriozola, L. Lefferts, and J. A. Faria, Enhanced catalytic activity and stability of nanoshaped Ni/CeO2 for CO2 methanation in micro-monoliths, Catal. Today, 383, 205-215 (2022). https://doi.org/10.1016/j.cattod.2021.02.014
  19. M. Tommasi, S. N. Degerli, G. Ramis, and I. Rossetti, Advancements in CO2 methanation: A comprehensive review of catalysis, reactor design and process optimization, Chem. Eng. Res. Des., 201, 457-482 (2024). https://doi.org/10.1016/j.cherd.2023.11.060
  20. Z. Zhang, Z. Yu, K. Feng, and B. Yan, Eu3+ doping-promoted Ni-CeO2 interaction for efficient low-temperature CO2 methanation, Appl. Catal. B, 317, 121800-121808 (2022). https://doi.org/10.1016/j.apcatb.2022.121800
  21. L. Jürgensen, E. A. Ehimen, J. Born, and J. B. Holm-Nielsen, Dynamic biogas upgrading based on the Sabatier process: Thermodynamic and dynamic process simulation, Bioresour. Technol., 178, 323-329 (2015). https://doi.org/10.1016/j.biortech.2014.10.069
  22. I. Hussain, A. A. Jalil, M. Y. S. Hamid, A. H. Khoja, M. Farooq, H. M. A. Sharif, N. S. Hassan, M. A. H. Aziz, and W. Nabgan, Substituted natural gas (SNG) production using an environmentfriendly, metal-free modified beta zeolite (@BEA) catalyst with a dandelion flower-like structure, Molecular. Catalysis, 523, 112140- 112154 (2022). https://doi.org/10.1016/j.mcat.2022.112140
  23. I. Hussain, A. A. Jalil, N. A. A. Fatah, M. Y. S. Hamid, M. Ibrahim, M. A. A. Aziz, and H. D. Setiabudi, A highly competitive system for CO methanation over an active metal-free fibrous silica mordenite via in-situ ESR and FTIR studies, Energy. Convers. Manag., 211, 112754-112768 (2020). https://doi.org/10.1016/j.enconman.2020.112754
  24. X. Zou, J. Liu, Y. Li, Z. Shen, X. Zhu, Q. Xia, Y. Cao, S. Zhang, Z. Ge, L. Cui, and Y. Wang, Molybdenum-doping promoted surface oxygen vacancy of CeO2 for enhanced low-temperature CO2 methanation over Ni-CeO2 catalysts, Appl. Surf. Sci., 661, 160087- 160093 (2024). https://doi.org/10.1016/j.apsusc.2024.160087
  25. R. P. Ye, Q. Li, W. Gong, T. Wang, J. J. Razink, L. Lin, Y. Y. Qin, Z. Zhou, H. Adidharma, J. Tang, A. G. Russell, M. Fan, and Y. G. Yao, High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation, Appl. Catal. B, 268, 118474-118484 (2020). https://doi.org/10.1016/j.apcatb.2019.118474
  26. Z. Bian, Y. M. Chan, Y. Yu, and S. Kawi, Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: A kinetic and mechanism study, Catal. Today, 347, 31-38 (2020). https://doi.org/10.1016/j.cattod.2018.04.067
  27. H. Fu and H. Lian, Optimizing low-temperature CO2 methanation with aluminum-doped Ni/CeO2 catalysts: Insights into reaction pathway adjustments and strong Metal-Support interactions, J. Chem. Eng., 489, 151021-151031 (2024). https://doi.org/10.1016/j.cej.2024.151021
  28. C. F. J. König, P. Schuh, T. Huthwelker, G. Smolentsev, T. J. Schildhauer, and M. Nachtegaal, Influence of the support on sulfur poisoning and regeneration of Ru catalysts probed by sulfur K-edge X-ray absorption spectroscopy, Catal. Today, 229, 55-63 (2014). https://doi.org/10.1016/j.cattod.2013.09.065
  29. S. Sharma, Z. Hu, P. Zhang, E. W. McFarland, and H. Metiu, CO2 methanation on Ru-doped ceria, J. Catal., 278, 297-309 (2011) . https://doi.org/10.1016/j.jcat.2010.12.015
  30. F. Wang, C. Li, X. Zhang, M. Wei, D. G. Evans, and X. Duan, Catalytic behavior of supported Ru nanoparticles on the {100}, {110}, and {111} facet of CeO2, J. Catal., 329, 177-186 (2015). https://doi.org/10.1016/j.jcat.2015.05.014
  31. T. Sakpal and L. Lefferts, Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation, J. Catal., 367, 171- 180 (2018).  https://doi.org/10.1016/j.jcat.2018.08.027
  32. S. C. Hong, A Study on reaction characteristics of CO2 conversion methanation over Pt catalysts for reduction of GHG, Appl. Chem. Eng., 23, 572-576 (2012). 
  33. A. Karelovic and P. Ruiz, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, J. Catal., 301, 141-153 (2013).  https://doi.org/10.1016/j.jcat.2013.02.009
  34. D. Duan, C. Hao, G. He, Y. Wen, and Z. Sun, Rh/CeO2 composites prepared by combining dealloying with calcination as an efficient catalyst for CO oxidation and CH4 combustion, J. Rare Earth., 40, 636-644 (2022). 
  35. F. Solymosi, A. Erdöhelyi, and T. Bánsági, Methanation of CO2 on supported rhodium catalyst, J. Catal., 68, 371-382 (1981).  https://doi.org/10.1016/0021-9517(81)90106-8
  36. H. Muroyama, Y. Tsuda, T. Asakoshi, H. Masitah, T. Okanishi, T. Matsui, and K. Eguchi, Carbon dioxide methanation over Ni catalysts supported on various metal oxides, J. Catal., 343, 178-184 (2016).  https://doi.org/10.1016/j.jcat.2016.07.018
  37. K. Zhao, W. Wang, and Z. Li, Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation, J. CO2 Util., 16, 236-244 (2016).  https://doi.org/10.1016/j.jcou.2016.07.010
  38. Y. H. Lee and S. S. Kim, A study on the reaction characteristics of carbon dioxide methanation catalyst for full-scale process application, Appl. Chem. Eng., 31, 323-327 (2020). 
  39. Z. Baysal and S. Kureti, CO2 methanation on Mg-promoted Fe catalysts, Appl. Catal. B, 262, 118300-118310 (2020).  https://doi.org/10.1016/j.apcatb.2019.118300
  40. T. Franken and A. Heel, Are Fe based catalysts an upcoming alternative to Ni in CO2 methanation at elevated pressure?, J. CO2 Util., 39, 101175-101182 (2020).  https://doi.org/10.1016/j.jcou.2020.101175
  41. O. V. Ischenko, A. G. Dyachenko, I. Saldan, V. V. Lisnyak, V. E. Diyuk, A. V. Vakaliuk, A. V. Yatsymyrskyi, S. V. Gaidai, T. M. Zakharova, O. Makota, T. Ericsson and L. Häggström, Methanation of CO2 on bulk Co–Fe catalysts, Int. J. Hydrogen Energy, 46, 37860-37871 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.034
  42. Y. H. Lee, S. C. Kim, and S. S. Kim, A study on toluene oxida-tion reaction characteristics of ni-based catalyst in induction heating system, Appl. Chem. Eng., 32, 627-631 (2021).
  43. G. Peng, L. Xu, V. A. Glezakou, and M. Mavrikakis, Mechanism of methanol synthesis on Ni(110), Catal. Sci. Technol., 11, 3279- 3294 (2021). https://doi.org/10.1039/D1CY00107H
  44. P. Kampe, N. Herrmann, A. Wesner, C. Ruhmlieb and J. Albert, Catalyst and parameter optimization study for slurry-phase methanol synthesis using Ni-doped indium-based catalysts, ACS Sustain. Chem. Eng., 11, 14633-14644 (2023). https://doi.org/10.1021/acssuschemeng.3c05584
  45. I. H. Seong, K. T. Cho and J. D. Lee, Effect of promoter with Ru and Pd on hydrogen production over Ni/CeO2-ZrO2 catalyst in steam reforming of methane, Appl. Chem. Eng., 35, 134-139 (2024). https://doi.org/10.14478/ACE.2024.1010
  46. Y. Wang, H. Wang, A. H. Dam, L. Xiao, Y. Qi, J. Niu, J. Yang, Y. A. Zhu, A. Holmen, and D. Chen, Understanding effects of Ni particle size on steam methane reforming activity by combined experimental and theoretical analysis, Catal. Today, 355, 139-147 (2020). https://doi.org/10.1016/j.cattod.2019.04.040
  47. A. Di Giuliano, J. Girr, R. Massacesi, K. Gallucci, and C. Courson, Sorption enhanced steam methane reforming by Ni–CaO materials supported on mayenite, Int. J. Hydrogen. Energy, 42, 13661-13680 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.198
  48. M. A. Nieva, M. M. Villaverde, A. Monzón, T. F. Garetto, and A. J. Marchi, Steam-methane reforming at low temperature on nickel-based catalysts, Chem. Eng. J., 235, 158-166 (2014). https://doi.org/10.1016/j.cej.2013.09.030
  49. X. Du, D. Zhang, L. Shi, R. Gao, and J. Zhang, Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane, J. Phys. Chem. C, 116, 10009-10016 (2012). https://doi.org/10.1021/jp300543r
  50. B. Abdullah, N. A. Abd Ghani and D. V. N. Vo, Recent advances in dry reforming of methane over Ni-based catalysts, J. Clean. Prod., 162, 170-185 (2017). https://doi.org/10.1016/j.jclepro.2017.05.176
  51. D. San-José-Alonso, J. Juan-Juan, M. J. Illán-Gómez, and M. C. Román-Martínez, Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane, Appl. Catal. A, 371, 54-59 (2009). https://doi.org/10.1016/j.apcata.2009.09.026
  52. H. J. Byeon, K. W. Jeon, H. M. Kim, Y. H. Lee, Y. S. Heo, M. J. Park, and D. W. Jeong, Promotion of methanation suppression by alkali and alkaline earth metals in Ni-CeO2 catalysts for water– gas shift reaction using waste-derived synthesis gas, Fuel Process. Technol., 231, 107229-107237 (2022). https://doi.org/10.1016/j.fuproc.2022.107229
  53. A. B. Dongil, L. Pastor-Pérez, N. Escalona, and A. SepúlvedaEscribano, Carbon nanotube-supported Ni-CeO2 catalysts. Effect of the support on the catalytic performance in the low-temperature WGS reaction, Carbon, 101, 296-304 (2016). https://doi.org/10.1016/j.carbon.2016.01.103
  54. K. R. Hwang, C. B. Lee, and J. S. Park, Advanced nickel metal catalyst for water-gas shift reaction, J. Power. Sources, 196, 1349-1352 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.084
  55. H. J. Seo, Effect of la in partial oxidation of methane to hydrogen over M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) catalysts, Appl. Chem. Eng., 30, 757-761 (2019). https://doi.org/10.14478/ACE.2019.1086
  56. G. Pantaleo, V. La Parola, F. Deganello, R. K. Singha, R. Bal, and A. M. Venezia, Ni/CeO2 catalysts for methane partial oxidation: Synthesis driven structural and catalytic effects, Appl. Catal. B, 189, 233-241 (2016). https://doi.org/10.1016/j.apcatb.2016.02.064
  57. T. Zhu and M. Flytzani-Stephanopoulos, Catalytic partial oxidation of methane to synthesis gas over Ni-CeO2, Appl. Catal. A, 208, 403-417 (2001). https://doi.org/10.1016/S0926-860X(00)00728-6
  58. J. Chen, T. Buchanan, E. A. Walker, T. J. Toops, Z. Li, P. Kunal, and E. A. Kyriakidou, Mechanistic understanding of methane combustion over Ni/CeO2: A combined experimental and theoretical approach, ACS Catal., 11, 9345-9354 (2021). https://doi.org/10.1021/acscatal.1c01088
  59. T. H. Lim, S. J. Cho, H. S. Yang, M. H. Engelhard, and D. H. Kim, Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion, Appl. Catal. A, 505, 62-69
  60. Z. Wang, C. Tang, J. Lin, Y. Zheng, Y. Xiao, Y. Zheng, and L. Jiang, Promoting methane combustion activity and stability by tuning multiple Ni–Si interactions in catalysts, Fuel, 349, 128678- 128685 (2023). https://doi.org/10.1016/j.fuel.2023.128678
  61. C. Sun, P. Beaunier, V. La Parola, L. F. Liotta, and P. Da Costa, Ni/CeO2 nanoparticles promoted by yttrium doping as catalysts for CO2 Methanation, ACS Appl. Nano Mater., 3, 12355-12368 (2020). https://doi.org/10.1021/acsanm.0c02841
  62. J. Tapia-Pérez, C. Ostos, C. Mendoza-Merlano, J. ArboledaEchavarría, and A. Echavarría-Isaza, Effect of the Ni/CeO2 mesoporous structure on the proper balance of active sites present for CO2 methanation: An in-situ NAP-XPS study, Environ. Technol. Innov., 35, 103713-103727 (2024). https://doi.org/10.1016/j.eti.2024.103713
  63. R. Daroughegi, F. Meshkani, and M. Rezaei, Characterization and evaluation of mesoporous high surface area promoted Ni-Al2O3 catalysts in CO2 methanation, J. Energy Inst., 93, 482-495 (2020). https://doi.org/10.1016/j.joei.2019.07.003
  64. Z. Lv, J. Ruan, W. Tu, X. Hu, D. He, X. Huang, and C. Qin, Integrated CO2 capture and In-Situ methanation by efficient dual functional Li4SiO4@Ni/CeO2, Sep. Purif. Technol., 309, 123044- 123054 (2023). https://doi.org/10.1016/j.seppur.2022.123044
  65. W. Ahmad, M. N. Younis, R. Shawabkeh, and S. Ahmed, Synthesis of lanthanide series (La, Ce, Pr, Eu & Gd) promoted Ni/ Γ-Al2O3 catalysts for methanation of CO2 at low temperature under atmospheric pressure, Catal. Commun., 100, 121-126 (2017). https://doi.org/10.1016/j.catcom.2017.06.044
  66. J. N. Park and E. W. McFarland, A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2, J. Catal., 266, 92-97 (2009). https://doi.org/10.1016/j.jcat.2009.05.018
  67. J. Lin, C. Ma, J. Luo, X. Kong, Y. Xu, G. Ma, J. Wang, C. Zhang, Z. Li, and M. Ding, Preparation of Ni based mesoporous Al2O3 catalyst with enhanced CO2 methanation performance, RSC Adv., 9, 8684-8694 (2019).
  68. H. Ma, K. Ma, J. Ji, S. Tang, C. Liu, W. Jiang, H. Yue, and B. Liang, Graphene intercalated Ni-SiO2/GO-Ni-foam catalyst with enhanced reactivity and heat-transfer for CO2 methanation, Chem. Eng. Sci., 194, 10-21 (2019). https://doi.org/10.1016/j.ces.2018.05.019
  69. Z. Zhang, Y. Tian, L. Zhang, S. Hu, J. Xiang, Y. Wang, L. Xu, Q. Liu, S. Zhang, and X. Hu, Impacts of nickel loading on properties, catalytic behaviors of Ni/Γ–Al2O3 catalysts and the reaction intermediates formed in methanation of CO2, Int. J. Hydrogen Energy, 44, 9291-9306 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.129
  70. P. Frontera, A. Macario, M. Ferraro, and P. L. Antonucci, Supported catalysts for CO2 methanation: A review, Catalysts, 7, 59-86 (2017). https://doi.org/10.3390/catal7020059
  71. R. M. Ravenelle, J. R. Copeland, W. G. Kim, J. C. Crittenden, and C. Sievers, Structural changes of γ-Al2O3-supported catalysts in hot liquid water, ACS Catal., 1, 552-561 (2011). https://doi.org/10.1021/cs1001515
  72. N. D. M. Ridzuan, M. S. Shaharun, M. A. Anawar, and I. Ud-Din, Ni-based catalyst for carbon dioxide methanation: A review on performance and progress, Catalysts, 12, 469-489 (2022). https://doi.org/10.3390/catal12050469
  73. T. Jomjaree, P. Sintuya, A. Srifa, W. Koo-amornpattana, S. Kiatphuengporn, S. Assabumrungrat, M. Sudoh, R. Watanabe, C. Fukuhara, and S. Ratchahat, Catalytic performance of Ni catalysts supported on CeO2 with different morphologies for low-temper-ature CO2 methanation, Catal. Today, 375, 234-244 (2021). https://doi.org/10.1016/j.cattod.2020.08.010
  74. J. Liu, X. Wu, Y. Chen, Y. Zhang, T. Zhang, H. Ai, and Q. Liu, Why Ni/CeO2 is more active than Ni/SiO2 for CO2 methanation? Identifying effect of Ni particle size and oxygen vacancy, Int. J. Hydrogen Energy, 47, 6089-6096 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.214
  75. Y. Xu, H. Wan, X. Du, B. Yao, S. Wei, Y. Chen, W. Zhuang, H. Yang, L. Sun, X. Tao, and P. Wang, Highly active Ni/CeO2/SiO2 catalyst for low-temperature CO2 methanation: Synergistic effect of small Ni particles and optimal amount of CeO2, Fuel Process. Technol., 236, 107418-107427 (2022). https://doi.org/10.1016/j.fuproc.2022.107418
  76. R. Zhao, Y. Xie, Z. Li, H. Weng, D. Zhu, Y. Mao, H. Wang and Q. Zhang, Unveiling the promotion effect of ethylenediamine on preparation of Ni/CeO2 catalyst for low-temperature CO2 methanation, Int. J. Hydrogen Energy, 51, 451-463 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.216
  77. F. Wang, M. Wei, D. G. Evans, and X. Duan, CeO2-based heterogeneous catalysts toward catalytic conversion of CO2, J. Mater. Chem. A Mater., 4, 5773-5783 (2016). https://doi.org/10.1039/C5TA10737G
  78. Y. H. Lee, J. Y. Ahn, D. D. Nguyen, S. W. Chang, S. S. Kim, and S. M. Lee, Role of oxide support in Ni based catalysts for CO2 methanation, RSC Adv., 11, 17648-17657 (2021). https://doi.org/10.1039/D1RA02327F
  79. G. Zhou, H. Liu, K. Cui, H. Xie, Z. Jiao, G. Zhang, K. Xiong, and X. Zheng, Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure, Int. J. Hydrogen Energy, 42, 16108-16117 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.154
  80. R. Tang, N. Ullah, Y. Hui, X. Li, and Z. Li, Enhanced CO2 methanation activity over Ni/CeO2 catalyst by one-pot method, Mol. Catal., 508, 111602-111613 (2021). https://doi.org/10.1016/j.mcat.2021.111602
  81. K. Liu, X. Xu, J. Xu, X. Fang, L. Liu, and X. Wang, The distributions of alkaline earth metal oxides and their promotional effects on Ni/CeO2 for CO2 methanation, J. CO2 Util., 38, 113-124 (2020). https://doi.org/10.1016/j.jcou.2020.01.016
  82. S. Ratchahat, S. Surathitimethakul, A. Thamungkit, P. Mala, M. Sudoh, R. Watanabe, C. Fukuhara, S. S. Chen, K. C. W. Wu, and T. Charinpanitkul, Catalytic performance of Ni/CeO2 catalysts prepared from different routes for CO2 methanation, J. Taiwan Inst. Chem. Eng., 121, 184-196 (2021). https://doi.org/10.1016/j.jtice.2021.04.008
  83. G. Zhou, H. Liu, K. Cui, A. Jia, G. Hu, Z. Jiao, Y. Liu, and X. Zhang, Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation, Appl. Surf. Sci., 383, 248-252 (2016). https://doi.org/10.1016/j.apsusc.2016.04.180
  84. G. Varvoutis, M. Lykaki, S. Stefa, V. Binas, G. E. Marnellos and M. Konsolakis, Deciphering the role of Ni particle size and nickel-ceria interfacial perimeter in the low-temperature CO2 methanation reaction over remarkably active Ni/CeO2 nanorods, Appl. Catal. B, 297, 120401-120414 (2021). https://doi.org/10.1016/j.apcatb.2021.120401
  85. S. M. Lee, Y. H. Lee, D. H. Moon, J. Y. Ahn, D. D. Nguyen, S. W. Chang, and S. S. Kim, Reaction mechanism and catalytic impact of Ni/CeO2-x catalyst for low-temperature CO2 methanation, Ind. Eng. Chem. Res., 58, 8656-8662 (2019). https://doi.org/10.1021/acs.iecr.9b00983
  86. L. Lin, C. A. Gerlak, C. Liu, J. Llorca, S. Yao, N. Rui, F. Zhang, Z. Liu, S. Zhang, K. Deng, C. B. Murray, J. A. Rodriguez, and S. D. Senanayake, Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst, J. Energy Chem., 61, 602-611 (2021).
  87. X. Chen, R. Ye, C. Sun, C. Jin, Y. Wang, H. Arandiyan, K. H. Lim, G. Song, F. Hu, C. Li, Z. H. Lu, G. Feng, R. Zhang, and S. Kawi, Optimizing low-temperature CO2 methanation through frustrated Lewis pairs on Ni/CeO2 catalysts, Chem. Eng. J., 484, 149471-149485 (2024). https://doi.org/10.1016/j.cej.2024.149471
  88. X. Feng, K. Wang, M. Zhou, F. Li, J. Liu, M. Zhao, L. Zhao, X. Song, P. Zhang, and L. Gao, Metal organic framework derived Ni/CeO2 catalyst with highly dispersed ultra-fine Ni nanoparticles: Impregnation synthesis and the application in CO2 methanation, Ceram. Int., 47, 12366-12374 (2021). https://doi.org/10.1016/j.ceramint.2021.01.089
  89. H. Liu, Y. Zhou, H. Cui, Z. Cheng, and Z. Zhou, Solvent-free ball-milling-derived Ni-CeO2/SiO2 catalysts for CO2 methanation, Ind. Eng. Chem. Res., 63, 10172-10183 (2024). https://doi.org/10.1021/acs.iecr.4c01069
  90. A. Cárdenas-Arenas, A. Quindimil, A. Davó-Quiñonero, E. BailónGarcía, D. Lozano-Castelló, U. De-La-Torre, B. Pereda-Ayo, J. A. González-Marcos, J. R. González-Velasco, and A. Bueno-López, Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: Tailoring the Ni-CeO2 contact, Appl. Mater. Today, 19, 100591-100602 (2020). https://doi.org/10.1016/j.apmt.2020.100591
  91. B. Murugan and A. V. Ramaswamy, Chemical states and redox properties of Mn/CeO2-TiO2 nanocomposites prepared by solution combustion route, J. Physic. Chem. C, 112, 20429-20442 (2008). https://doi.org/10.1021/jp806316x
  92. S. Damyanova, C. A. Perez, M. Schmal, and J. M. C. Bueno, Characterization of ceria-coated alumina carrier, Appl. Catal. A, 234, 271-282 (2002). https://doi.org/10.1016/S0926-860X(02)00233-8
  93. H. Zhu, Z. Qin, W. Shan, W. Shen, and J. Wang, Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature: A TPR study with H2 and CO as reducing agents, J. Catal., 225, 267-277 (2004). https://doi.org/10.1016/j.jcat.2004.04.006
  94. T. Wang, R. Tang, and Z. Li, Enhanced CO2 methanation activity over Ni/CeO2 catalyst by adjusting metal-support interactions, Mol. Catal., 558, 114034-114049 (2024). https://doi.org/10.1016/j.mcat.2024.114034
  95. N. Rui, X. Zhang, F. Zhang, Z. Liu, X. Cao, Z. Xie, R. Zou, S. D. Senanayake, Y. Yang, J. A. Rodriguez, and C. J. Liu, Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization, Appl. Catal. B, 282, 119581-119592 (2021). https://doi.org/10.1016/j.apcatb.2020.119581
  96. L. Bian, L. Zhang, R. Xia, and Z. Li, Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst, J. Nat. Gas. Sci. Eng., 27, 1189-1194
  97. A. Mosayebi, A. Ranjbar, and M. H. E. Ahmadi, CO2 hydrogenation over 5%Ni/CeO2–Al2O3 catalysts: Effect of supports composition, Res. Chem. Intermed., 50, 3305-3325 (2024). https://doi.org/10.1007/s11164-024-05312-7
  98. S. López-Rodríguez, A. Davó-Quiñonero, E. Bailón-García, D. Lozano-Castelló, I. J. Villar-Garcia, V. P. Dieste, J. A. O. Calvo, J. R. G. Velasco, and A. Bueno-López, Monitoring by in situ NAP-XPS of active sites for CO2 methanation on a Ni/CeO2 catalyst, J. CO2 Util., 60, 101980-101989 (2022). https://doi.org/10.1016/j.jcou.2022.101980
  99. A. I. Tsiotsias, N. D. Charisiou, E. Harkou, S. Hafeez, G. Manos, A. Constantinou, A. G. S. Hussien, A. A. Dabbawala, V. Sebastian, S. J. Hinder, M. A. Baker, K. Polychronopoulou, and M. A. Goula, Enhancing CO2 methanation over Ni catalysts supported on sol-gel derived Pr2O3-CeO2: An experimental and theoretical investigation, Appl. Catal. B, 318, 121836-121851 (2022). https://doi.org/10.1016/j.apcatb.2022.121836
  100. G. Varvoutis, A. Lampropoulos, P. Oikonomou, C. D. Andreouli, V. Stathopoulos, M. Lykaki, G. E. Marnellos, and M. Konsolakis, Fabrication of highly active and stable Ni/CeO2-nanorods washcoated on ceramic NZP structured catalysts for scaled-up CO2 methanation, J. CO2 Util., 70, 102425-102440 (2023). https://doi.org/10.1016/j.jcou.2023.102425
  101. L. Li, L. Jiang, D. Li, J. Yuan, G. Bao, and K. Li, Enhanced low-temperature activity of CO2 methanation over Ni/CeO2 catalyst: Influence of preparation methods, Appl. Catal. O: Open, 192, 206956-206964 (2024). https://doi.org/10.1016/j.apcato.2024.206956
  102. M. Romero-Sáez, A. B. Dongil, N. Benito, R. Espinoza-González, N. Escalona, and F. Gracia, CO2 methanation over nickel-ZrO2 cat-alyst supported on carbon nanotubes: A comparison between two impregnation strategies, Appl. Catal. B, 237, 817-825 (2018). https://doi.org/10.1016/j.apcatb.2018.06.045
  103. T. Pu, J. Chen, W. Tu, J. Xu, Y. F. Han, I. E. Wachs, and M. Zhu, Dependency of CO2 methanation on the strong metal-support interaction for supported Ni/CeO2 catalysts, J. Catal., 413, 821-828 (2022). https://doi.org/10.1016/j.jcat.2022.07.038
  104. P. G. Lustemberg, Z. Mao, A. Salcedo, B. Irigoyen, M. V. Ganduglia-Pirovano, and C. T. Campbell, Nature of the active sites on Ni/CeO2 catalysts for methane conversions, ACS Catal., 11, 10604-10613 (2021). https://doi.org/10.1021/acscatal.1c02154
  105. T. A. Le, M. S. Kim, S. H. Lee, T. W. Kim, and E. D. Park, CO and CO2 methanation over supported Ni catalysts, Catal. Today, 293-294, 89-96 (2017). https://doi.org/10.1016/j.cattod.2016.12.036
  106. S. Lin, Z. Li, and M. Li, Tailoring metal-support interactions via tuning CeO2 particle size for enhancing CO2 methanation activity over Ni/CeO2 catalysts, Fuel, 333, 126369-126382 (2023). https://doi.org/10.1016/j.fuel.2022.126369
  107. S. Lin, L. Gong, N. Zhao, H. Zhao, F. Zhao, Y. Bai, Z. Li, and W. Liu, Tailoring metal-support interactions via spatial confinement of Ni/CeO2 interfaces on h-BN for efficient CO2 methanation, Chem. Eng. J., 494, 152937-152949 (2024). https://doi.org/10.1016/j.cej.2024.152937
  108. J. Ren, H. Guo, J. Yang, Z. Qin, J. Lin, and Z. Li, Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory, Appl. Surf. Sci., 351, 504-516 (2015). https://doi.org/10.1016/j.apsusc.2015.05.173