Acknowledgement
본 연구는 한국환경산업기술원의 대기 환경산업 경쟁력 강화 국산화 기술 개발사업을 지원받아 수행된 연구로 이에 감사드립니다(No. RS-2023-00220022).
References
- I. Hussain, G. Tanimu, S. Ahmed, C. U. Aniz, H. Alasiri, and K. Alhooshani, A review of the indispensable role of oxygen vacancies for enhanced CO2 methanation activity over CeO2-based catalysts: Uncovering, influencing, and tuning strategies, Int. J. Hydrogen Energy, 48, 24663-24696 (2023). https://doi.org/10.1016/j.ijhydene.2022.08.086
- Y. Yoo, H. Choi, J. H. Bang, S. Chae, J. W. Kim, J. M. Kim, and S. W. Lee, CO2 sequestration and utilization of calcium-extracted slag using air-cooled blast furnace slag and convert slag, Appl. Chem. Eng., 28, 101-111 (2017).
- S. C. Chae, Y. N. Jang, and K. W. Ryu, Mineral carbonation as a sequestration method of CO2, J. Geol. Soc. Korea, 45, 527-555 (2009).
- J. Lee, B. J. Kim, S. H. Shin, N. S. Kwak, D. W. Lee, J. H. Lee, and J. G. Shim, 0.1 MW test bed CO2 capture studies with new absorbent (KoSol-5), Appl. Chem. Eng., 27, 391-396 (2016). https://doi.org/10.14478/ace.2016.1046
- Y. H. Lee, S. H. Lee, I. H. Hwang, S. Y. Choi, S. M. Lee, and S. S. Kim, A study on the calcium ion extraction for PCC production, Appl. Chem. Eng., 29, 43-48 (2018).
- S. H. Cho, B. C. Bai, H. R. Yu, and Y. S. Lee, Carbon capture and CO2/CH4 separation technique using porous carbon materials, Appl. Chem. Eng., 22, 343-347 (2011).
- R. Lee and J. M. Sohn, Study on CO2-coal gasification reaction using natural mineral catalysts, Appl. Chem. Eng., 27, 56-61 (2016). https://doi.org/10.14478/ace.2015.1122
- H. Ji, K. Naveen, D. Kim, and D. H. Cho, Catalytic application of metal-organic frameworks for chemical fixation of CO2 into cyclic carbonate, Appl. Chem. Eng., 31, 258-266 (2020).
- T. K. Kim and W. G. Lee, Conveision characteristics of CH4 and CO2 in an atmospheric pressure plasma reactor, Appl. Chem. Eng., 22, 653-657 (2011).
- D. C. Lee, J. B. Kim, and Y. J. You, Preparation of honeycomb carbon dioxide adsorbent impregnated K2CO3 and its characterization, Appl. Chem. Eng., 23, 624-629 (2012).
- Y. He, H. Shen, Y. Bai, X. Niu, Y. Zhao, C. Wu, S. Yang, Y. Cao, Q. Zhang, and H. Zhang, Construction of the low-loading Ni/CeO2 catalyst with a boosted CO2 methanation performance via the facile pyrolysis CeO2 support, Ind. Eng. Chem. Res., 61, 15948-15960 (2022). https://doi.org/10.1021/acs.iecr.2c02822
- X. Chen, Y. He, X. Cui, and L. Liu, High value utilization of waste blast furnace slag: New Ni-CeO2/hBFS catalyst for low temperature CO2 methanation, Fuel, 338, 127309-127319 (2023). https://doi.org/10.1016/j.fuel.2022.127309
- S. Chen, C. Miao, L. Liang, and J. Ouyang, Oxygen vacanciesmediated CO methanation over Ni/CeO2-ZrO solid solutions assembled on clay minerals, Energy Fuels, 36, 8340-8350 (2022). https://doi.org/10.1021/acs.energyfuels.2c01421
- Z. Lv, H. Du, S. Xu, T. Deng, J. Ruan, and C. Qin, Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation, Appl. Energy, 355, 122242-122250 (2024). https://doi.org/10.1016/j.apenergy.2023.122242
- V. Golovanova, M. C. Spadaro, J. Arbiol, V. Golovanov, T. T. Rantala, T. Andreu, and J. R. Morante, Effects of solar irradiation on thermally driven CO2 methanation using Ni/CeO2–based catalyst, Appl. Catal. B, 291, 120038-120049 (2021). https://doi.org/10.1016/j.apcatb.2021.120038
- T. Zhang, W. Wang, F. Gu, W. Xu, J. Zhang, Z. Li, T. Zhu, G. Xu, Z. Zhong, and F. Su, Enhancing the low-temperature CO2 methanation over Ni/La-CeO2 catalyst: The effects of surface oxygen vacancy and basic site on the catalytic performance, Appl. Catal. B, 312, 121385-121400 (2022). https://doi.org/10.1016/j.apcatb.2022.121385
- J. D. Park, T. H. Kim, B. H. An, J. S. Che, and T. S. Park, Study on the stability of power supply in power systems with intermittent renewable energy using VFT, J. Korean Inst. IIIum. Electr. Install. Eng., 38, 67-73 (2024).
- N. García-Moncada, J. C. Navarro, J. A. Odriozola, L. Lefferts, and J. A. Faria, Enhanced catalytic activity and stability of nanoshaped Ni/CeO2 for CO2 methanation in micro-monoliths, Catal. Today, 383, 205-215 (2022). https://doi.org/10.1016/j.cattod.2021.02.014
- M. Tommasi, S. N. Degerli, G. Ramis, and I. Rossetti, Advancements in CO2 methanation: A comprehensive review of catalysis, reactor design and process optimization, Chem. Eng. Res. Des., 201, 457-482 (2024). https://doi.org/10.1016/j.cherd.2023.11.060
- Z. Zhang, Z. Yu, K. Feng, and B. Yan, Eu3+ doping-promoted Ni-CeO2 interaction for efficient low-temperature CO2 methanation, Appl. Catal. B, 317, 121800-121808 (2022). https://doi.org/10.1016/j.apcatb.2022.121800
- L. Jürgensen, E. A. Ehimen, J. Born, and J. B. Holm-Nielsen, Dynamic biogas upgrading based on the Sabatier process: Thermodynamic and dynamic process simulation, Bioresour. Technol., 178, 323-329 (2015). https://doi.org/10.1016/j.biortech.2014.10.069
- I. Hussain, A. A. Jalil, M. Y. S. Hamid, A. H. Khoja, M. Farooq, H. M. A. Sharif, N. S. Hassan, M. A. H. Aziz, and W. Nabgan, Substituted natural gas (SNG) production using an environmentfriendly, metal-free modified beta zeolite (@BEA) catalyst with a dandelion flower-like structure, Molecular. Catalysis, 523, 112140- 112154 (2022). https://doi.org/10.1016/j.mcat.2022.112140
- I. Hussain, A. A. Jalil, N. A. A. Fatah, M. Y. S. Hamid, M. Ibrahim, M. A. A. Aziz, and H. D. Setiabudi, A highly competitive system for CO methanation over an active metal-free fibrous silica mordenite via in-situ ESR and FTIR studies, Energy. Convers. Manag., 211, 112754-112768 (2020). https://doi.org/10.1016/j.enconman.2020.112754
- X. Zou, J. Liu, Y. Li, Z. Shen, X. Zhu, Q. Xia, Y. Cao, S. Zhang, Z. Ge, L. Cui, and Y. Wang, Molybdenum-doping promoted surface oxygen vacancy of CeO2 for enhanced low-temperature CO2 methanation over Ni-CeO2 catalysts, Appl. Surf. Sci., 661, 160087- 160093 (2024). https://doi.org/10.1016/j.apsusc.2024.160087
- R. P. Ye, Q. Li, W. Gong, T. Wang, J. J. Razink, L. Lin, Y. Y. Qin, Z. Zhou, H. Adidharma, J. Tang, A. G. Russell, M. Fan, and Y. G. Yao, High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation, Appl. Catal. B, 268, 118474-118484 (2020). https://doi.org/10.1016/j.apcatb.2019.118474
- Z. Bian, Y. M. Chan, Y. Yu, and S. Kawi, Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: A kinetic and mechanism study, Catal. Today, 347, 31-38 (2020). https://doi.org/10.1016/j.cattod.2018.04.067
- H. Fu and H. Lian, Optimizing low-temperature CO2 methanation with aluminum-doped Ni/CeO2 catalysts: Insights into reaction pathway adjustments and strong Metal-Support interactions, J. Chem. Eng., 489, 151021-151031 (2024). https://doi.org/10.1016/j.cej.2024.151021
- C. F. J. König, P. Schuh, T. Huthwelker, G. Smolentsev, T. J. Schildhauer, and M. Nachtegaal, Influence of the support on sulfur poisoning and regeneration of Ru catalysts probed by sulfur K-edge X-ray absorption spectroscopy, Catal. Today, 229, 55-63 (2014). https://doi.org/10.1016/j.cattod.2013.09.065
- S. Sharma, Z. Hu, P. Zhang, E. W. McFarland, and H. Metiu, CO2 methanation on Ru-doped ceria, J. Catal., 278, 297-309 (2011) . https://doi.org/10.1016/j.jcat.2010.12.015
- F. Wang, C. Li, X. Zhang, M. Wei, D. G. Evans, and X. Duan, Catalytic behavior of supported Ru nanoparticles on the {100}, {110}, and {111} facet of CeO2, J. Catal., 329, 177-186 (2015). https://doi.org/10.1016/j.jcat.2015.05.014
- T. Sakpal and L. Lefferts, Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation, J. Catal., 367, 171- 180 (2018). https://doi.org/10.1016/j.jcat.2018.08.027
- S. C. Hong, A Study on reaction characteristics of CO2 conversion methanation over Pt catalysts for reduction of GHG, Appl. Chem. Eng., 23, 572-576 (2012).
- A. Karelovic and P. Ruiz, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, J. Catal., 301, 141-153 (2013). https://doi.org/10.1016/j.jcat.2013.02.009
- D. Duan, C. Hao, G. He, Y. Wen, and Z. Sun, Rh/CeO2 composites prepared by combining dealloying with calcination as an efficient catalyst for CO oxidation and CH4 combustion, J. Rare Earth., 40, 636-644 (2022).
- F. Solymosi, A. Erdöhelyi, and T. Bánsági, Methanation of CO2 on supported rhodium catalyst, J. Catal., 68, 371-382 (1981). https://doi.org/10.1016/0021-9517(81)90106-8
- H. Muroyama, Y. Tsuda, T. Asakoshi, H. Masitah, T. Okanishi, T. Matsui, and K. Eguchi, Carbon dioxide methanation over Ni catalysts supported on various metal oxides, J. Catal., 343, 178-184 (2016). https://doi.org/10.1016/j.jcat.2016.07.018
- K. Zhao, W. Wang, and Z. Li, Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation, J. CO2 Util., 16, 236-244 (2016). https://doi.org/10.1016/j.jcou.2016.07.010
- Y. H. Lee and S. S. Kim, A study on the reaction characteristics of carbon dioxide methanation catalyst for full-scale process application, Appl. Chem. Eng., 31, 323-327 (2020).
- Z. Baysal and S. Kureti, CO2 methanation on Mg-promoted Fe catalysts, Appl. Catal. B, 262, 118300-118310 (2020). https://doi.org/10.1016/j.apcatb.2019.118300
- T. Franken and A. Heel, Are Fe based catalysts an upcoming alternative to Ni in CO2 methanation at elevated pressure?, J. CO2 Util., 39, 101175-101182 (2020). https://doi.org/10.1016/j.jcou.2020.101175
- O. V. Ischenko, A. G. Dyachenko, I. Saldan, V. V. Lisnyak, V. E. Diyuk, A. V. Vakaliuk, A. V. Yatsymyrskyi, S. V. Gaidai, T. M. Zakharova, O. Makota, T. Ericsson and L. Häggström, Methanation of CO2 on bulk Co–Fe catalysts, Int. J. Hydrogen Energy, 46, 37860-37871 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.034
- Y. H. Lee, S. C. Kim, and S. S. Kim, A study on toluene oxida-tion reaction characteristics of ni-based catalyst in induction heating system, Appl. Chem. Eng., 32, 627-631 (2021).
- G. Peng, L. Xu, V. A. Glezakou, and M. Mavrikakis, Mechanism of methanol synthesis on Ni(110), Catal. Sci. Technol., 11, 3279- 3294 (2021). https://doi.org/10.1039/D1CY00107H
- P. Kampe, N. Herrmann, A. Wesner, C. Ruhmlieb and J. Albert, Catalyst and parameter optimization study for slurry-phase methanol synthesis using Ni-doped indium-based catalysts, ACS Sustain. Chem. Eng., 11, 14633-14644 (2023). https://doi.org/10.1021/acssuschemeng.3c05584
- I. H. Seong, K. T. Cho and J. D. Lee, Effect of promoter with Ru and Pd on hydrogen production over Ni/CeO2-ZrO2 catalyst in steam reforming of methane, Appl. Chem. Eng., 35, 134-139 (2024). https://doi.org/10.14478/ACE.2024.1010
- Y. Wang, H. Wang, A. H. Dam, L. Xiao, Y. Qi, J. Niu, J. Yang, Y. A. Zhu, A. Holmen, and D. Chen, Understanding effects of Ni particle size on steam methane reforming activity by combined experimental and theoretical analysis, Catal. Today, 355, 139-147 (2020). https://doi.org/10.1016/j.cattod.2019.04.040
- A. Di Giuliano, J. Girr, R. Massacesi, K. Gallucci, and C. Courson, Sorption enhanced steam methane reforming by Ni–CaO materials supported on mayenite, Int. J. Hydrogen. Energy, 42, 13661-13680 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.198
- M. A. Nieva, M. M. Villaverde, A. Monzón, T. F. Garetto, and A. J. Marchi, Steam-methane reforming at low temperature on nickel-based catalysts, Chem. Eng. J., 235, 158-166 (2014). https://doi.org/10.1016/j.cej.2013.09.030
- X. Du, D. Zhang, L. Shi, R. Gao, and J. Zhang, Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane, J. Phys. Chem. C, 116, 10009-10016 (2012). https://doi.org/10.1021/jp300543r
- B. Abdullah, N. A. Abd Ghani and D. V. N. Vo, Recent advances in dry reforming of methane over Ni-based catalysts, J. Clean. Prod., 162, 170-185 (2017). https://doi.org/10.1016/j.jclepro.2017.05.176
- D. San-José-Alonso, J. Juan-Juan, M. J. Illán-Gómez, and M. C. Román-Martínez, Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane, Appl. Catal. A, 371, 54-59 (2009). https://doi.org/10.1016/j.apcata.2009.09.026
- H. J. Byeon, K. W. Jeon, H. M. Kim, Y. H. Lee, Y. S. Heo, M. J. Park, and D. W. Jeong, Promotion of methanation suppression by alkali and alkaline earth metals in Ni-CeO2 catalysts for water– gas shift reaction using waste-derived synthesis gas, Fuel Process. Technol., 231, 107229-107237 (2022). https://doi.org/10.1016/j.fuproc.2022.107229
- A. B. Dongil, L. Pastor-Pérez, N. Escalona, and A. SepúlvedaEscribano, Carbon nanotube-supported Ni-CeO2 catalysts. Effect of the support on the catalytic performance in the low-temperature WGS reaction, Carbon, 101, 296-304 (2016). https://doi.org/10.1016/j.carbon.2016.01.103
- K. R. Hwang, C. B. Lee, and J. S. Park, Advanced nickel metal catalyst for water-gas shift reaction, J. Power. Sources, 196, 1349-1352 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.084
- H. J. Seo, Effect of la in partial oxidation of methane to hydrogen over M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) catalysts, Appl. Chem. Eng., 30, 757-761 (2019). https://doi.org/10.14478/ACE.2019.1086
- G. Pantaleo, V. La Parola, F. Deganello, R. K. Singha, R. Bal, and A. M. Venezia, Ni/CeO2 catalysts for methane partial oxidation: Synthesis driven structural and catalytic effects, Appl. Catal. B, 189, 233-241 (2016). https://doi.org/10.1016/j.apcatb.2016.02.064
- T. Zhu and M. Flytzani-Stephanopoulos, Catalytic partial oxidation of methane to synthesis gas over Ni-CeO2, Appl. Catal. A, 208, 403-417 (2001). https://doi.org/10.1016/S0926-860X(00)00728-6
- J. Chen, T. Buchanan, E. A. Walker, T. J. Toops, Z. Li, P. Kunal, and E. A. Kyriakidou, Mechanistic understanding of methane combustion over Ni/CeO2: A combined experimental and theoretical approach, ACS Catal., 11, 9345-9354 (2021). https://doi.org/10.1021/acscatal.1c01088
- T. H. Lim, S. J. Cho, H. S. Yang, M. H. Engelhard, and D. H. Kim, Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion, Appl. Catal. A, 505, 62-69
- Z. Wang, C. Tang, J. Lin, Y. Zheng, Y. Xiao, Y. Zheng, and L. Jiang, Promoting methane combustion activity and stability by tuning multiple Ni–Si interactions in catalysts, Fuel, 349, 128678- 128685 (2023). https://doi.org/10.1016/j.fuel.2023.128678
- C. Sun, P. Beaunier, V. La Parola, L. F. Liotta, and P. Da Costa, Ni/CeO2 nanoparticles promoted by yttrium doping as catalysts for CO2 Methanation, ACS Appl. Nano Mater., 3, 12355-12368 (2020). https://doi.org/10.1021/acsanm.0c02841
- J. Tapia-Pérez, C. Ostos, C. Mendoza-Merlano, J. ArboledaEchavarría, and A. Echavarría-Isaza, Effect of the Ni/CeO2 mesoporous structure on the proper balance of active sites present for CO2 methanation: An in-situ NAP-XPS study, Environ. Technol. Innov., 35, 103713-103727 (2024). https://doi.org/10.1016/j.eti.2024.103713
- R. Daroughegi, F. Meshkani, and M. Rezaei, Characterization and evaluation of mesoporous high surface area promoted Ni-Al2O3 catalysts in CO2 methanation, J. Energy Inst., 93, 482-495 (2020). https://doi.org/10.1016/j.joei.2019.07.003
- Z. Lv, J. Ruan, W. Tu, X. Hu, D. He, X. Huang, and C. Qin, Integrated CO2 capture and In-Situ methanation by efficient dual functional Li4SiO4@Ni/CeO2, Sep. Purif. Technol., 309, 123044- 123054 (2023). https://doi.org/10.1016/j.seppur.2022.123044
- W. Ahmad, M. N. Younis, R. Shawabkeh, and S. Ahmed, Synthesis of lanthanide series (La, Ce, Pr, Eu & Gd) promoted Ni/ Γ-Al2O3 catalysts for methanation of CO2 at low temperature under atmospheric pressure, Catal. Commun., 100, 121-126 (2017). https://doi.org/10.1016/j.catcom.2017.06.044
- J. N. Park and E. W. McFarland, A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2, J. Catal., 266, 92-97 (2009). https://doi.org/10.1016/j.jcat.2009.05.018
- J. Lin, C. Ma, J. Luo, X. Kong, Y. Xu, G. Ma, J. Wang, C. Zhang, Z. Li, and M. Ding, Preparation of Ni based mesoporous Al2O3 catalyst with enhanced CO2 methanation performance, RSC Adv., 9, 8684-8694 (2019).
- H. Ma, K. Ma, J. Ji, S. Tang, C. Liu, W. Jiang, H. Yue, and B. Liang, Graphene intercalated Ni-SiO2/GO-Ni-foam catalyst with enhanced reactivity and heat-transfer for CO2 methanation, Chem. Eng. Sci., 194, 10-21 (2019). https://doi.org/10.1016/j.ces.2018.05.019
- Z. Zhang, Y. Tian, L. Zhang, S. Hu, J. Xiang, Y. Wang, L. Xu, Q. Liu, S. Zhang, and X. Hu, Impacts of nickel loading on properties, catalytic behaviors of Ni/Γ–Al2O3 catalysts and the reaction intermediates formed in methanation of CO2, Int. J. Hydrogen Energy, 44, 9291-9306 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.129
- P. Frontera, A. Macario, M. Ferraro, and P. L. Antonucci, Supported catalysts for CO2 methanation: A review, Catalysts, 7, 59-86 (2017). https://doi.org/10.3390/catal7020059
- R. M. Ravenelle, J. R. Copeland, W. G. Kim, J. C. Crittenden, and C. Sievers, Structural changes of γ-Al2O3-supported catalysts in hot liquid water, ACS Catal., 1, 552-561 (2011). https://doi.org/10.1021/cs1001515
- N. D. M. Ridzuan, M. S. Shaharun, M. A. Anawar, and I. Ud-Din, Ni-based catalyst for carbon dioxide methanation: A review on performance and progress, Catalysts, 12, 469-489 (2022). https://doi.org/10.3390/catal12050469
- T. Jomjaree, P. Sintuya, A. Srifa, W. Koo-amornpattana, S. Kiatphuengporn, S. Assabumrungrat, M. Sudoh, R. Watanabe, C. Fukuhara, and S. Ratchahat, Catalytic performance of Ni catalysts supported on CeO2 with different morphologies for low-temper-ature CO2 methanation, Catal. Today, 375, 234-244 (2021). https://doi.org/10.1016/j.cattod.2020.08.010
- J. Liu, X. Wu, Y. Chen, Y. Zhang, T. Zhang, H. Ai, and Q. Liu, Why Ni/CeO2 is more active than Ni/SiO2 for CO2 methanation? Identifying effect of Ni particle size and oxygen vacancy, Int. J. Hydrogen Energy, 47, 6089-6096 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.214
- Y. Xu, H. Wan, X. Du, B. Yao, S. Wei, Y. Chen, W. Zhuang, H. Yang, L. Sun, X. Tao, and P. Wang, Highly active Ni/CeO2/SiO2 catalyst for low-temperature CO2 methanation: Synergistic effect of small Ni particles and optimal amount of CeO2, Fuel Process. Technol., 236, 107418-107427 (2022). https://doi.org/10.1016/j.fuproc.2022.107418
- R. Zhao, Y. Xie, Z. Li, H. Weng, D. Zhu, Y. Mao, H. Wang and Q. Zhang, Unveiling the promotion effect of ethylenediamine on preparation of Ni/CeO2 catalyst for low-temperature CO2 methanation, Int. J. Hydrogen Energy, 51, 451-463 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.216
- F. Wang, M. Wei, D. G. Evans, and X. Duan, CeO2-based heterogeneous catalysts toward catalytic conversion of CO2, J. Mater. Chem. A Mater., 4, 5773-5783 (2016). https://doi.org/10.1039/C5TA10737G
- Y. H. Lee, J. Y. Ahn, D. D. Nguyen, S. W. Chang, S. S. Kim, and S. M. Lee, Role of oxide support in Ni based catalysts for CO2 methanation, RSC Adv., 11, 17648-17657 (2021). https://doi.org/10.1039/D1RA02327F
- G. Zhou, H. Liu, K. Cui, H. Xie, Z. Jiao, G. Zhang, K. Xiong, and X. Zheng, Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure, Int. J. Hydrogen Energy, 42, 16108-16117 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.154
- R. Tang, N. Ullah, Y. Hui, X. Li, and Z. Li, Enhanced CO2 methanation activity over Ni/CeO2 catalyst by one-pot method, Mol. Catal., 508, 111602-111613 (2021). https://doi.org/10.1016/j.mcat.2021.111602
- K. Liu, X. Xu, J. Xu, X. Fang, L. Liu, and X. Wang, The distributions of alkaline earth metal oxides and their promotional effects on Ni/CeO2 for CO2 methanation, J. CO2 Util., 38, 113-124 (2020). https://doi.org/10.1016/j.jcou.2020.01.016
- S. Ratchahat, S. Surathitimethakul, A. Thamungkit, P. Mala, M. Sudoh, R. Watanabe, C. Fukuhara, S. S. Chen, K. C. W. Wu, and T. Charinpanitkul, Catalytic performance of Ni/CeO2 catalysts prepared from different routes for CO2 methanation, J. Taiwan Inst. Chem. Eng., 121, 184-196 (2021). https://doi.org/10.1016/j.jtice.2021.04.008
- G. Zhou, H. Liu, K. Cui, A. Jia, G. Hu, Z. Jiao, Y. Liu, and X. Zhang, Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation, Appl. Surf. Sci., 383, 248-252 (2016). https://doi.org/10.1016/j.apsusc.2016.04.180
- G. Varvoutis, M. Lykaki, S. Stefa, V. Binas, G. E. Marnellos and M. Konsolakis, Deciphering the role of Ni particle size and nickel-ceria interfacial perimeter in the low-temperature CO2 methanation reaction over remarkably active Ni/CeO2 nanorods, Appl. Catal. B, 297, 120401-120414 (2021). https://doi.org/10.1016/j.apcatb.2021.120401
- S. M. Lee, Y. H. Lee, D. H. Moon, J. Y. Ahn, D. D. Nguyen, S. W. Chang, and S. S. Kim, Reaction mechanism and catalytic impact of Ni/CeO2-x catalyst for low-temperature CO2 methanation, Ind. Eng. Chem. Res., 58, 8656-8662 (2019). https://doi.org/10.1021/acs.iecr.9b00983
- L. Lin, C. A. Gerlak, C. Liu, J. Llorca, S. Yao, N. Rui, F. Zhang, Z. Liu, S. Zhang, K. Deng, C. B. Murray, J. A. Rodriguez, and S. D. Senanayake, Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst, J. Energy Chem., 61, 602-611 (2021).
- X. Chen, R. Ye, C. Sun, C. Jin, Y. Wang, H. Arandiyan, K. H. Lim, G. Song, F. Hu, C. Li, Z. H. Lu, G. Feng, R. Zhang, and S. Kawi, Optimizing low-temperature CO2 methanation through frustrated Lewis pairs on Ni/CeO2 catalysts, Chem. Eng. J., 484, 149471-149485 (2024). https://doi.org/10.1016/j.cej.2024.149471
- X. Feng, K. Wang, M. Zhou, F. Li, J. Liu, M. Zhao, L. Zhao, X. Song, P. Zhang, and L. Gao, Metal organic framework derived Ni/CeO2 catalyst with highly dispersed ultra-fine Ni nanoparticles: Impregnation synthesis and the application in CO2 methanation, Ceram. Int., 47, 12366-12374 (2021). https://doi.org/10.1016/j.ceramint.2021.01.089
- H. Liu, Y. Zhou, H. Cui, Z. Cheng, and Z. Zhou, Solvent-free ball-milling-derived Ni-CeO2/SiO2 catalysts for CO2 methanation, Ind. Eng. Chem. Res., 63, 10172-10183 (2024). https://doi.org/10.1021/acs.iecr.4c01069
- A. Cárdenas-Arenas, A. Quindimil, A. Davó-Quiñonero, E. BailónGarcía, D. Lozano-Castelló, U. De-La-Torre, B. Pereda-Ayo, J. A. González-Marcos, J. R. González-Velasco, and A. Bueno-López, Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: Tailoring the Ni-CeO2 contact, Appl. Mater. Today, 19, 100591-100602 (2020). https://doi.org/10.1016/j.apmt.2020.100591
- B. Murugan and A. V. Ramaswamy, Chemical states and redox properties of Mn/CeO2-TiO2 nanocomposites prepared by solution combustion route, J. Physic. Chem. C, 112, 20429-20442 (2008). https://doi.org/10.1021/jp806316x
- S. Damyanova, C. A. Perez, M. Schmal, and J. M. C. Bueno, Characterization of ceria-coated alumina carrier, Appl. Catal. A, 234, 271-282 (2002). https://doi.org/10.1016/S0926-860X(02)00233-8
- H. Zhu, Z. Qin, W. Shan, W. Shen, and J. Wang, Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature: A TPR study with H2 and CO as reducing agents, J. Catal., 225, 267-277 (2004). https://doi.org/10.1016/j.jcat.2004.04.006
- T. Wang, R. Tang, and Z. Li, Enhanced CO2 methanation activity over Ni/CeO2 catalyst by adjusting metal-support interactions, Mol. Catal., 558, 114034-114049 (2024). https://doi.org/10.1016/j.mcat.2024.114034
- N. Rui, X. Zhang, F. Zhang, Z. Liu, X. Cao, Z. Xie, R. Zou, S. D. Senanayake, Y. Yang, J. A. Rodriguez, and C. J. Liu, Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization, Appl. Catal. B, 282, 119581-119592 (2021). https://doi.org/10.1016/j.apcatb.2020.119581
- L. Bian, L. Zhang, R. Xia, and Z. Li, Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst, J. Nat. Gas. Sci. Eng., 27, 1189-1194
- A. Mosayebi, A. Ranjbar, and M. H. E. Ahmadi, CO2 hydrogenation over 5%Ni/CeO2–Al2O3 catalysts: Effect of supports composition, Res. Chem. Intermed., 50, 3305-3325 (2024). https://doi.org/10.1007/s11164-024-05312-7
- S. López-Rodríguez, A. Davó-Quiñonero, E. Bailón-García, D. Lozano-Castelló, I. J. Villar-Garcia, V. P. Dieste, J. A. O. Calvo, J. R. G. Velasco, and A. Bueno-López, Monitoring by in situ NAP-XPS of active sites for CO2 methanation on a Ni/CeO2 catalyst, J. CO2 Util., 60, 101980-101989 (2022). https://doi.org/10.1016/j.jcou.2022.101980
- A. I. Tsiotsias, N. D. Charisiou, E. Harkou, S. Hafeez, G. Manos, A. Constantinou, A. G. S. Hussien, A. A. Dabbawala, V. Sebastian, S. J. Hinder, M. A. Baker, K. Polychronopoulou, and M. A. Goula, Enhancing CO2 methanation over Ni catalysts supported on sol-gel derived Pr2O3-CeO2: An experimental and theoretical investigation, Appl. Catal. B, 318, 121836-121851 (2022). https://doi.org/10.1016/j.apcatb.2022.121836
- G. Varvoutis, A. Lampropoulos, P. Oikonomou, C. D. Andreouli, V. Stathopoulos, M. Lykaki, G. E. Marnellos, and M. Konsolakis, Fabrication of highly active and stable Ni/CeO2-nanorods washcoated on ceramic NZP structured catalysts for scaled-up CO2 methanation, J. CO2 Util., 70, 102425-102440 (2023). https://doi.org/10.1016/j.jcou.2023.102425
- L. Li, L. Jiang, D. Li, J. Yuan, G. Bao, and K. Li, Enhanced low-temperature activity of CO2 methanation over Ni/CeO2 catalyst: Influence of preparation methods, Appl. Catal. O: Open, 192, 206956-206964 (2024). https://doi.org/10.1016/j.apcato.2024.206956
- M. Romero-Sáez, A. B. Dongil, N. Benito, R. Espinoza-González, N. Escalona, and F. Gracia, CO2 methanation over nickel-ZrO2 cat-alyst supported on carbon nanotubes: A comparison between two impregnation strategies, Appl. Catal. B, 237, 817-825 (2018). https://doi.org/10.1016/j.apcatb.2018.06.045
- T. Pu, J. Chen, W. Tu, J. Xu, Y. F. Han, I. E. Wachs, and M. Zhu, Dependency of CO2 methanation on the strong metal-support interaction for supported Ni/CeO2 catalysts, J. Catal., 413, 821-828 (2022). https://doi.org/10.1016/j.jcat.2022.07.038
- P. G. Lustemberg, Z. Mao, A. Salcedo, B. Irigoyen, M. V. Ganduglia-Pirovano, and C. T. Campbell, Nature of the active sites on Ni/CeO2 catalysts for methane conversions, ACS Catal., 11, 10604-10613 (2021). https://doi.org/10.1021/acscatal.1c02154
- T. A. Le, M. S. Kim, S. H. Lee, T. W. Kim, and E. D. Park, CO and CO2 methanation over supported Ni catalysts, Catal. Today, 293-294, 89-96 (2017). https://doi.org/10.1016/j.cattod.2016.12.036
- S. Lin, Z. Li, and M. Li, Tailoring metal-support interactions via tuning CeO2 particle size for enhancing CO2 methanation activity over Ni/CeO2 catalysts, Fuel, 333, 126369-126382 (2023). https://doi.org/10.1016/j.fuel.2022.126369
- S. Lin, L. Gong, N. Zhao, H. Zhao, F. Zhao, Y. Bai, Z. Li, and W. Liu, Tailoring metal-support interactions via spatial confinement of Ni/CeO2 interfaces on h-BN for efficient CO2 methanation, Chem. Eng. J., 494, 152937-152949 (2024). https://doi.org/10.1016/j.cej.2024.152937
- J. Ren, H. Guo, J. Yang, Z. Qin, J. Lin, and Z. Li, Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory, Appl. Surf. Sci., 351, 504-516 (2015). https://doi.org/10.1016/j.apsusc.2015.05.173